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The non-equilibrium Green’s function (NEGF) formalism has emerged as a powerful tool for
describing quantum transport phenomena in novel nanomaterials and devices. The ac-NEGF and
Floquet-NEGF methods, in particular, have been instrumental in understanding and predicting the
behaviour of systems driven out of equilibrium by time-dependent fields. In this article, I have
presented a brief overview of the aforementioned methods, primarily focusing on their mathematical
formulation and concluding with a note on the fundamental differences that set these two methods
apart.

I. INTRODUCTION

In classical physics, Green functions are used as a pow-
erful method for solving inhomogeneous differential equa-
tions. Many-body physics Green functions turn out to be
a very powerful technique for evaluating the properties of
such systems in both thermal equilibrium and nonequi-
librium situations.

The formulations for the retarded, advanced, and the
“lesser” and “greater” Green functions used henceforth
are given by

Gr(r, t; r′, t′) = −iθ(t− t′)⟨{ψ(r, t), ψ†(r′, t′)}⟩,
Ga(r, t; r′, t′) = iθ(t′ − t)⟨{ψ(r, t), ψ†(r′, t′)}⟩,
G<(r, t; r′, t′) = i⟨ψ†(r′, t′) ψ(r, t)⟩,
G>(r, t; r′, t′) = i⟨ψ(r, t) ψ†(r′, t′)⟩

where θ(t) represents the Heaviside step function. These
various functions are not independent; they obey

Gr −Ga = G> −G<

The time-ordered, the retarded, and the advanced Green
functions can be expressed in terms of G> and G<:

G(r, t; r′, t′) = θ(t− t′)G> + θ(t′ − t)G<,

Gr,a(r, t; r′t′) = ±θ(±t∓ t′)[G> −G<]

Each formulation has its own advantages. For example,
G<,>(r, t; r′, t′) are directly linked to observables, while
Gr,a(r, t; r′, t′) are well suited for determining the physi-
cal response of a system.

II. AC-NEGF FORMALISM

As described in Ref.1, the authors have developed a lin-
ear response theory for self-consistent ac quantum trans-
port employing nonequilibrium Green functions solved
self-consistently with Poisson’s equation in the presence
of a time-dependent potential at a non-transport termi-
nal. Unlike source-drain contacts, which are involved in
charge transport, nontransport terminals are coupled to

the device channel through the dynamic potential. Fur-
ther, this approach was applied to a carbon nanotube
field-effect transistor (NTFET) in order to determine its
high-frequency response.

A. Model Hamiltonian

Let us begin by specifying the Hamiltonian operator of
the system. The total system can be divided into three
isolated regions, and the Hamiltonian of the entire infi-
nite system is written as

H = Hd +Hc +Ht (1)

where Hd is the device Hamiltonian, Hc refers to the two
semi-infinite leads, and Ht couples the device region to
the leads. The device Hamiltonian can be further simpli-
fied as

Hd = H0
d +HDC

d +HAC
d (2)

where

H0
d =

∑
n

ϵ0nĉ
†
nĉn +

∑
n,m

tn,mĉ
†
nĉm + h.c., (3)

and

HDC
d =

∑
n

UDC
n ĉ†nĉn, HAC

d =
∑
n

Un(t)ĉ
†
nĉn, (4)

where ĉ†n and ĉn refer to fermionic creation and annihi-
lation operators at site n, respectively. The term UDC

n

represents a spatially-varying but time-independent elec-
trostatic potential, which can be incorporated into the
on-site energies ϵ0n. The problem under consideration
originates from the presence of an a priori unknown time-
and space-dependent potential Un(t) induced by exter-
nally applied time-dependent fields. Both UDC

n and Un(t)
must be determined separately by solving Poisson’s equa-
tion in a self-consistent manner.

The Hamiltonian for the two contacts to the left and
right (α = s, d) of the device reads

Hc =
∑
k,α

ϵ0kαĉ
†
kαĉkα (5)
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where ĉ†kα and ĉkα are fermionic creation and annihilation
operators for a particle in terminal α in state k.

The Hamiltonian Ht couples the device subspace with
the semi-infinite source and drain reservoirs.

Ht =
∑
kα,n

Tn,kαĉ
†
nĉkα + T ∗

n,kαĉ
†
kαĉn (6)

Note that Eq. (6) describes only the coupling between
the device and transport terminals, but not to non-
transport terminals.

B. Quantum dynamics and nonequilibrium
statistics

The next step is to describe the carrier dynamics
within the device scattering region using Green functions.
We adopt a shorthand notation G(t, t

′
) for Green func-

tions, which are, in general, functions of both space and
time, G(rt; r

′
t
′
). The time-evolution of the Green func-

tions is governed by the Dyson equation

Gγ(t, t
′
) = gγ0 (t, t

′
)+

∫
dt1dt2 g

γ
0 (t, t1)Σ

γ(t1, t2)G
γ(t2, t

′
),

(7)

where gγ0 (t, t
′
) = gγ0 (t − t

′
) refers to the re-

tarded/advanced (γ = r,a) Green function of the isolated

system. The self-energy Σγ(t, t
′
) accounts for all inter-

actions of the isolated system with its environment. In
this particular case under consideration, the self-energy
Σγ(t, t

′
) can be divided into three contributions

Σγ(t, t
′
) =

∑
α=s,d

Σγ
α(t− t

′
) +UDCδ(t− t

′
) +U(t)δ(t− t

′
)

(8)
The first term Σc =

∑
α=s,d Σα is the contact self-energy

and connects the device region with the semi-infinite
source and drain contacts. The second term is a scalar
potential corresponding to the response of the device to
externally applied time-independent fields. The third
term is of particular interest to us since it describes the
dynamic response of the device due to external time-
dependent fields. Since the time-dependent signal is be-
ing applied at the gate (nontransport) terminal of the
NTFET, the induced potential U(t) distorts only the
device scattering region while the contacts remain in a
steady state.

In the energy domain, the self-energy, cf. Eq. (8) is
given by

Σγ(E,E
′
) = 2πδ(E−E

′
)[Σγ

c (E)+UDC]+U(E−E
′
) (9)

This can be achieved by switching from the time do-
main into energy-domain representation via a double-
time Fourier transform, more details about which have
been presented in Appendix A.

Fourier transforming Eq. (7) and using Eq. (9), the
effective Dyson equation for the device is given by

Gγ(E − E
′
) = 2πδ(E − E

′
)Gγ

0(E)+ (10)∫
dE

2π
Gγ

0(E)U(E − E)Gγ(E,E
′
),

where

Gγ
0(E) = [gγ0 (E)−1 − UDC − Σγ

c (E)−1] (11)

and

gγ0 (E) = [(E ± iη)I −H0
d ]

−1, (12)

with an infinitesimal η > 0. In the reformulated Dyson
equation in Eq. (10), we have two distinct terms de-
scribing the dynamic response of the system. The first
term describes the system’s response in contact with the
leads and subject to a dc electrostatic potential. The ac
component, i.e., the second term, contains this term as
well (Gγ

0) and determines the distortion of the system
away from the ideal operation point and is driven by the
time-dependent potential U(t).
The deviation of total nonequilibrium particle distri-

bution G< from its reference distribution at dc in the
presence of the ac potential U is determined by map-
ping Dyson’s equation for G<, which gives: G< =
G<

0 + G<
0 UG

a + Gr
0UG

<. After the Fourier transform,
the particle distribution is given by

G<(E,E
′
) = 2πG<

0 (E)δ(E − E
′
)

+

∫
dE

2π
[G<

0 (E)U(E − E)Ga(E,E
′
)

+Gr(E,E)U(E − E
′
)G<

0 (E
′
)]

+

∫
dE1

2π

dE2

2π

dE3

2π
Gr(E,E1)U(E1 − E2)G

<
0 (E2)

× U(E2 − E3)G
a(E3, E

′
), (13)

where G<
0 (E) = Gr

0(E)Σ<
c (E)Ga

0(E) corresponds to the
non-equilibrium spectral density at dc. The function
Σ<

c (E) = Σαifα(E)Γα(E) where Γα(E) = i(Σr
α −

Σa
α) is the broadening function, and fα(E) = 1/[1 +

e(E−µα)/kBT ] is the Fermi function at temperature T with
µα being the chemical potential of terminal α.
While the equations mentioned so far describe the

quantum transport and the nonequilibrium statistics, we
do not yet have a solution for the dynamic potential U .
This must be obtained by solving Poisson’s equation

∇[ϵ(r)∇U(r, E − E
′
)] = −ρ(r, E − E

′
), (14)

with the frequency-dependent charge density

ρ(ω) = ie

∫
dE

2π
G<(E+, E) (15)

The calculation of the ac charge density requires G< to
be evaluated at two energies (E+, E) = (E + h̄ω, E), in
contrast to the dc case where only one energy is needed.
Furthermore, equations (14) and (15) implement the self-
consistent coupling between electrostatics and transport.
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C. Linearized equations

Applying a time-harmonic signal at the gate terminal
ṽg(t) = v0cos(ωt) of small amplitude v0 and frequency
ω, we seek a potential response of the form U(r, t) =
V (r, ω)cos(ωt), which reads in the energy domain

U(E) =
1

2
V (r, ω)[δ(E + h̄ω) + δ(E − h̄ω)] (16)

Keeping only terms to linear order in V , the ac transport-
Poisson equations take the form

Gγ(E+, E) = 2πGγ
0(E)δ(h̄ω) +

1

2
Gγ

0(E
+)V (ω)Gγ

0(E)

(17)

G<(E+, E) = 2πG<
0 (E)δ(h̄ω) +

1

2
G<

0 (E
+)V (ω)Ga

0(E)

+
1

2
Gr

0(E
+)V (ω)G<

0 (E) (18)

ρ(ω) = ie

∫
dE

2π
G<(E+, E) (19)

− ρ(r, ω) = ∇[ϵ(r)∇V (r, ω)] (20)

D. ac Response Functions: Current and
Conductance

The set of Eqs. (17)-(20) obtained help determine the
frequency-dependent Green functions, which can be used
to obtain ac response functions. However, an additional
layer of complexity is introduced by the fact that un-
der time-dependent conditions, the total ac current Iα is
not entirely determined by particle current but has, in
general, contributions from the displacement current as
well.

1. Particle current Ipα(ω)

The particle current through terminal α is determined
by the dynamic change in the particle density at the given
terminal.

Ipα(t) = −e d
dt

⟨N̂α(t)⟩ = −e d
dt

∑
k

⟨ĉ†kα(t)ĉkα(t)⟩ (21)

Making use of the fermionic anti-commutator relations
and the Heisenberg equation of motion for operators Ȯ =
i
h̄ [H,O] with H being the total system Hamiltonian, the
particle current is given by

Iαp (t) =
e

h̄
Tr

∫
dt

′
[Gr(t, t

′
)Σ<

α (t
′
, t)− Σ<

α (t, t
′
)Ga(t

′
, t)

+G<(t, t
′
)Σa

α(t
′
, t)− Σr

α(t, t
′
)G<(t

′
, t)] (22)

The corresponding energy-domain representation is given
by

Ipα(ω) =
e

h̄
Tr

∫
dE[G<(E+, E)Σa

α(E)− Σr
α(E

+)G<(E+, E)

+Gr(E+, E)Σ<
α (E)− Σ<

α (E
+)Ga(E+, E)]

(23)

One can now derive the dynamic conductance by ex-
panding Σ<

α and G< to linear order in the terminal volt-
age vβ , and utilizing Eqs.(17) and (18) to substitute for
Gγ(E+, E) and G<(E+, E). Inserting all relevant terms
in Eq. (23), the frequency-dependent particle current is
given by

Ipα(ω) =
1

2

e2

h

∑
β

Tr

∫
dE[{Gr,+

0 V (ω)Gr
0Σ̃

<
β

− Σ̃<,+
β Ga,+

0 V (ω)Ga
0}δαβ + G̃<,+

0,β V (ω)Ga
0Σ

a
α

+Gr,+
0 V (ω)G̃<

0,βΣ
a
α − Σr,+

α G̃<,+
0,β V (ω)Ga

0

− Σr,+
α Gr,+

0 V (ω)G<
0,β ]vβ (24)

By definition, the tensor prefactor that relates the termi-
nal current Iα with the applied bias vβ in Eq. (24) is the
ac linear response particle conductance, gpαβ .

2. Displacement current Id(ω)

Under time-dependent conditions, the sum-rules for
particle conductance (Σαgαβ = 0 and Σβgαβ = 0) does
not hold in general since the displacement current present
under ac conditions is not taken into account in this for-
mulation.
Starting from the charge continuity equation, ∂tρ+∇·

jp = 0, and integrating over volume, we obtain Kirchoff’s
current law under ac conditions: Id(t) + ΣαI

p
α = 0. Ipα

represents the conventional particle current through ter-
minal α, and can be associated with a particle conduc-
tance through Ipα = Σβg

p
αβvβ with vβ being the voltage

at terminal β. The displacement current Id(t) = ∂tQ(t)
accounts for the dynamic change in the total charge and
is nonzero under time-dependent conditions.
In order to obtain an expression for the total conduc-

tance defined by Iα = Σβgαβvβ one needs to know how
the current is split between the particle and displace-
ment currents at each terminal. While we do have an
expression for the particle current Ipα at any given termi-
nal α from Eq. (24), the same is not true for Id since
only the total rather than the terminal displacement cur-
rent is known. Two ansätze have been presented for
the formulation of terminal and total displacement cur-
rent: Iα = Ipα + AαI

d and Id = Σβg
d
βvβ , where g

d
β de-

fines the displacement conductance, which then specifies
a total conductance: gαβ = gpαβ + Aαg

d
β . The parti-

tioning factor Aα can be determined from the sum-rules
Σαgαβ = Σβgαβ = 0, so that the total conductance is
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given by

gαβ = gpαβ −
∑

γ g
p
αγ∑

γ g
d
γ

gdβ (25)

and constiutes a (N × N) matrix for a system with N
terminals, in general.

III. FLOQUET-NEGF FORMALISM

The Hamiltonian of the entire system can be defined
as per Eq. (1). The device Hamiltonian, in particular, is
given by

Hd(t) =
∑
ij

hij(t)ĉ
†
i ĉj (26)

where ĉ†i (ĉi) denotes the Fermionic creation (annihila-
tion) operator in many-body space and hij(t) = hij(t+T )
represents a periodic one-body Hamiltonian, which im-
plies that the device Hamiltonian is time-periodic too
with Hd(t) = Hd(t+ T ).
The retarded Green function, Gr, satisfies the equation

of motion (EOM) given by

[i∂t′ −H(t′)] Gr(t′, t) = δ(t′ − t) (27)

while the lesser Green function, G<, satisfies the Keldysh
relation

G<(t′, t) =

∫
dt1 dt2 G

r(t′, t1)Σc(t1 − t2)G
a(t2, t)

(28)

where Σ<
c =

∑
α=s,d Σ

<
α refers to the contact self-energy.

Since Hd in H is time dependent, G propagators de-
pend on two times; unlike Σc or gL/R they are not Fourier
diagonal. Instead, the steady state condition for the
propagators is given by

G(t′, t) = G(t′ +
2π

ω0
, t+

2π

ω0
) (29)

Following up on Eq. (29), we can expand the system’s G
as a Fourier transform in t′ − t and a Fourier series in t
as shown:

G(t′, t) =
∑
n

e−inω0t

∫ +∞

−∞

dE

2π
e−iE(t′−t)Gn(E) (30)

Given such a decomposition of G, we need to express the
EOM in terms of the harmonics Gn(E). In order to so,
we redefine Gn(E) (where E is unbounded) in terms of

the quasienergy Ẽ ∈ [0, h̄ω0], i.e. E = Ẽ+ h̄ω0 such that

Gmn(Ẽ) = Gm−n(Ẽ + mω0). This has the advantage
that the EOM translates to a matrix equation analogous
to that of a static system in Fourier space∑

m

(Ẽ + n′ω0 −Hn′m)Gr
mn(Ẽ) = δn′n (31)

where Hn′n =
∫
dtei(n

′−n)tH(t). Note that we have
essentially transformed a time-dependent Schrödinger’s
equation with a time-periodic Hamiltonian to a time-
independent equation at the cost of an increment in the
dimensionality of the basis set. This is known as the Flo-
quet description of the steady-state dynamics in terms
of sidebands, which appear formally as a new quantum
number n. Time-dependent portions ofH(t) act as a cou-
pling between different sidebands. The effective Hamil-
tonian for the nth sideband is the static portion of H(t),
shifted by −nω0. One, therefore, sometimes defines the
Floquet ‘Hamiltonian’ of the device region as

Hdnm = Hdnm − nω0δnm (32)

whereas before, Hdn′n =
∫
dtei(n

′−n)tHd(t). Likewise,
one may define the Floquet self-energies as

Σcnm(Ẽ) = δnmΣc(Ẽ + nω0) (33)

The Floquet EOM for Gr
nm(Ẽ) can be solved similar

to the case of a static system. Within the device region
of the system, we have

Gr(Ẽ) = [Ẽ − hS −Σr
c(Ẽ)]−1 (34)

Boldface denotes the sideband structure implicit in all
the above matrices. Similarly, the Keldysh relation takes
the simple form

G<(Ẽ) = Gr(Ẽ)Σc(Ẽ)Ga(Ẽ) (35)

IV. CONCLUSION

In theory, the ac-NEGF and Floquet-NEGF tech-
niques are considered to be equally suitable for study-
ing the behaviour of systems driven out of equilib-
rium by time-dependent fields. However, in practice,
the particular choice depends on the specific problem
being studied: for example, in the articles reviewed,
the ac-NEGF technique was considered more suitable
for studying the behaviour of nanotransistors, while
the Floquet-NEGF method was the preferred technique
for explaining the unique behaviour of superconductor-
graphene-superconductor (SGS) junctions. Theoreti-
cally, the Floquet-NEGF formalism essentially eliminates
the time-dependence of a system by transforming a time-
dependent Schrödinger’s equation with a time-periodic
Hamiltonian to a time-independent equation at the cost
of an increment in the dimensionality of the basis set,
which appears as Floquet quasi-levels. In contrast, the
ac-NEGF formalism retains the time dependence as well
as the dimensionality of the system.
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Appendix A: Double-time Fourier Transform

The double-time Fourier transform is defined as

F (E,E
′
) =

∫
dt dt

′
eiEt/h̄e−iE

′
t
′
/h̄F (t, t

′
)

F (t, t
′
) =

∫
dE

2π

dE
′

2π
e−iEt/h̄eiE

′
t
′
/h̄F (E,E

′
) (A1)

An example of such a domain transformation would be
Eq. (9) where

Σγ(E,E
′
) =

∫
dt dt

′
eiEt/h̄e−iE

′
t
′
/h̄ Σγ(t, t

′
)

=

∫ ∫
dt dt

′
eiEt/h̄e−iE

′
t
′
/h̄UDCδ(t− t

′
)

+

∫ ∫
dt dt

′
eiEt/h̄e−iE

′
t
′
/h̄U(t)δ(t− t

′
)

+

∫ ∫
dt dt

′
eiEt/h̄e−iE

′
t
′
/h̄ Σγ

c (t− t
′
)

(A2)

Let us consider each distinct term of the transform:

I1 =

∫ ∫
dt dt

′
eiEt/h̄e−iE

′
t
′
/h̄UDCδ(t− t

′
)

=

∫
dt′e−E′t′/h̄

∫
UDC δ(t− t′) eiEt/h̄dt

=

∫
ei(E−E′)t′/h̄ UDC dt′ = 2πδ(E − E′) UDC (A3)

I2 =

∫ ∫
eiEt/h̄ e−iE′t′/h̄ U(t) δ(t− t′) dt dt′

=

∫
dt′ e−E′t′/h̄

∫
U(t) δ(t− t′) eiEt/h̄dt

=

∫
U(t′) ei(E−E′)t′/h̄ dt′

= U(E − E′) (A4)

I3 =

∫ ∫
eiEt/h̄ e−iE′t′/h̄ Σγ

c (t− t′) dt dt′

=

∫
dt′ e−iE′t′/h̄

∫
Σγ

c (t− t′) eiEt/h̄ dt

=

∫
dt′ e−iE′t′/h̄ eiEt′/h̄

∫
Σγ

c (t
′′
) eiEt′′/h̄ dt

′′

=

∫
Σγ

c (E) ei(E−E′)t′/h̄ dt′

= 2πδ(E − E′) Σγ
c (E) (A5)

The double-time Fourier transform of the self-energy
term, cf. Eq. (8), will be a summation of the terms
derived in Eqs. (A4)-(A5).
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