

Debasish Panda Electrical Engineering Indian Institute of Technology, Bombay

21D070021 Dual Degree Programme Github

Degree/Certificate	Institute	Year	$\mathrm{CGPA}/\%$
B.Tech+M.Tech(DD)	IIT Bombay, Maharashtra	2021-'26	8.52/10
Senior Secondary	ODM Public School, Bhubaneshwar, Odisha	2021	98.2
Secondary	DAV Public School, Cuttack, Odisha	2019	98.4

SCHOLASTIC ACHIEVEMENTS

• Secured All India Rank 529 in JEE-Advanced examination among 141,699 candidates across India	(2021)
• Secured All India Rank 561 in JEE-Mains among 939,008 candidates across India	(2021)
• Bagged first position in the state of Odisha in JEE Mains, March session	(2021)
• Secured All India Rank 4 in NEST(CEBS) among 24,328 candidates across India	(2021)
• Secured 99.97 percentile in NEST(NISER) among 24,328 candidates across India	(2021)
• Scored 356 marks out of 450 in the Birla Institute of Science and Technology Admission Test (BITSAT)	(2021)
• Qualified for IOQC-Part II , having been placed in the National Top 1% of candidates in IOQC-Part I	(2021)
• Recipient of the prestigious KVPY fellowship with AIR 419 in SX stream	
• Awarded the highly coveted NTSE scholarship , having qualified NTSE Stage-II examination	(2019)
• Qualified for $INJSO$, having been placed in the National Top 1% of candidates in $NSEJS$	(2019)
- Qualified for \mathbf{RMO} , having qualified \mathbf{PRMO} , Pre-Regional Mathematics Olympiad	(2019)

KEY PROJECTS _

Bubble Trouble Game - C++ Project

Computer Programming and Utilization Course Project | Prof. Parag Chaudhari, IIT Bombay

- Developed a bubble shooter video game through advanced utilisation of C++ libraries, Object-Oriented Programming (OOP), header files, and XEvents for optimal performance and engaging user experience
- Implemented several features, such as a **progressive difficulty system** for the players with different sizes of bubbles, **shooter health**, **physical obstacles** in the path of the bubbles, a **timer**, and the **effect of gravity** on the bubbles

Probability and Random Processes - Python Project

Probability and Random Processes Course Project | Prof. D.Manjunath, IIT Bombay

- Simulated the "capture-release-recapture problem" and the probabilistic behaviour of data-packet transmission via routers in parallel queues using Python libraries
- Applied **Hoeffding's inequality** in the context of coin-toss optimisations and emulated the same using **Python**, utilising an elementary **learning algorithm** in the process

IITB-CPU - 16-bit Microprocessor

Digital Systems Course Project | Prof. Virendra Singh, IIT Bombay

- Designed the IITB-CPU, an 8-register, 16-bit elementary computer developed for teaching based on the Little Computer Architecture through Behavioral-Dataflow Modelling in VHDL using Quartus Prime
- Implemented the system as a **Finite State Machine** and optimized it to reduce the number of states involved
- Designed the 16-bit **ALU** (Arithmetic Logic Unit), **Memory Unit**, **FSM Controller** and **Datapath** in **VHDL**, and verified the entities involved in the design by performing **RTL simulations** on some selective inputs

IITB-RISC - 16-bit RISC Microprocessor

Microprocessors Course Project | Prof. Virendra Singh, IIT Bombay

- Implemented the IITB-RISC, an 8-register, 16-bit single-cycle RISC processor based on the Turing complete ISA through Structural Modelling in VHDL using Quartus Prime
- Implemented the system as a Finite State Machine and optimized it to reduce the number of states involved
- Designed the 16-bit ALU (Arithmetic Logic Unit), Memory Unit, Pipeline Controller and Datapath in VHDL
- Implemented a **6-stage pipeline** along with **data-hazard mitigation** techniques, such as **data-forwarding** and **branch predictor** for an efficient architecture

(Autumn 2022)

(Autumn 2022)

(Autumn 2021)

(Spring 2023)

OTHER PROJECTS ____

Digital Logic Design in VHDL

Digital Circuits Lab Course Project | Prof. Maryam Shojaei Baghini, IIT Bombay

- Optimized combinational circuits and programmed their architectures using Structural Modelling in VHDL
- Designed and verified an ALU (Arithmetic Logic Unit) using Behavioral-Dataflow Modelling in VHDL
- Designed a Mealy type FSM using Behavioural modelling that recognizes a string on the Krypton board
- Verified designs by performing simulations on all possible inputs using Scanchain on the Krypton board

8051 Microcontroller Programming

Microprocessors Lab Course Project | Prof. Saravanan Vijayakumaran, IIT Bombay

- Interfaced a 4x4 keyboard with 8051 using Embedded C, using software debounce mechanism to detect accurately the password input given by the keyboard
- Programmed the 8051 in **Embedded C** to take different numbers as input through the DIP switches, then display the sorted numbers and the number to be searched using on-board LEDs
- Interfaced the 8051 with an AFG and ADC, and programmed the 8051 using Embedded C for serial communication with the computer through the **UART Module**, thereby utilising the **SPI protocol**

Device Physics

Summer of Science | Maths and Physics Club, IIT Bombay

- Studied various fundamental physical processes and equations such as drift and diffusion, recombination and generation, the Einstein relation and the continuity equation, along with their application in various devices
- Analyzed the fundamental physics behind Metal-Insulator-Semiconductor(MIS) junctions, Metal-Semiconductor junctions and that behind the operation of semiconductor devices such as **p-n** junction diodes, MOSFETs, etc.

TECHNICAL SKILLS _

C/C++, Python, Qiskit, VHDL, Embedded C, Assembly, SPICE, MATLAB Languages Softwares/Packages IATFX, Quartus Prime, Keil μ Vision, Atmel Flip, Github, ngSpice

Key Courses Undertaken _____

Electrical Engg.	Introduction to Electrical Engineering Practice, Power Engineering-I, Analog Circuits, Digital Systems, Signal Processing, Power Engineering-II, Electronic Devices and Circuits, Probability and Random Processes, Control Systems, Microprocessors, Matrix Computations
CSE & Maths	Computer Programming and Utilization, Calculus, Linear Algebra, Differential Equations, Complex Analysis
Physics	Quantum Physics and Applications, Electricity and Magnetism
Labs	Analog Lab, Microprocessors Lab, Power Engineering Lab, Digital Circuits Lab

ONGOING COURSES

Physics of Transistors, Quantum Transport in Nanoscale Devices, Quantum Information & Computing

POSITIONS OF RESPONSIBILITY (PORS)

UG Teaching Assistant | Student Support Services (SSS), IITB

- Undergraduate Teaching Assistant for the half-semester courses of Quantum Physics and Application (PH112) and **Differential Equations-I (MA108)**
- Conducted weekly tutorials for 40+ first year undergraduate students
- Was responsible for **instructing** and **aiding** students with basic concepts of Quantum Mechanics and Differential Equations, along with evaluation of answer scripts, as and when required

Extra Curricular Activities _____

- Won the concept-video competition, LED, organised by EESA (Electrical Engg. Student's Association) on the eve of Impulse: the EE Department Fest (2023)
- Won the General Quiz by Arul Mani organised by Literati Club, IITB in collaboration with ADCPS (2022)
- Completed a year-long volunteering course in National Social Service (NSS), IIT Bombay
- Qualified the Prelims of National Anveshika Skill Test organised by IIT Kanpur and IAPT (2020)
- Represented DAV Public School, Cuttack in Inter-School STEM Quiz organised by Mother's Public School, Bhubaneshwar and achieved first position in the competition (2019)

(Spring 2023)

(Autumn 2022)

(April 2023 - June 2023)

(2021)

(Summer 2022)