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The Dance of Atoms
A primer on some fundamental concepts in Condensed Matter Physics

Debasish Panda

Si vis pacem, para
bellum

Semiconductor-based devices have become the lifeblood
of modern civilisation, powering the tiniest micro-
processor to the largest of the ICBMs. In our quest
for smaller and still smaller transistors, we have now
hit a fundamental barrier beyond which determinis-
tic Newtonian mechanics is helpless and quantum me-
chanics reigns with all its glory of probabilistic chaos.
This calls immediately for a fundamental understand-
ing of the quantum mechanical nature of such beyond-
Moore devices, viz., quantum devices. This article is
devoted to a brief exploration of such concepts, start-
ing from simple toy models of quantum condensed
matter systems—reviewing the tight-binding ansatz,
physics of quantum bands, second quantization—and
touching upon the state-of-the-art in modern con-
densed matter—quantum topology and topological
electronics.

1. Second Quantization

Before we begin our incursion into the so-called ’second
quantization’, we need to appreciate the reason why the need
for second quantization arose. The properties of quantum
condensed matter systems and, by extension, that of real
materials are controlled by the collective behaviour of elec-
trons in the presence of some background potential due to
an underlying crystal lattice. This statement, in fact, is a
simpler rendition of the Bohr-Oppenheimer approximation.
So, what factors do we need to consider during the analysis
of a condensed matter system?
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• Focus on electrons and their collective dynamics

• Electrons are free to move from one orbital to another (tun-
nelling/hopping)

• They are subject to a background potential from the lattice

• They can interact with each other due to Coulomb repulsion

The question remains, how do we formulate the Hamiltonian
for many-body systems? How do we encode anti-symmetry
of fermions into this many-particle wavefunction? And most
importantly, how do we find out the eigenstates/eigenvalues
of momentum and/or energy of the system?

So, how do we encode fermionic anti-symmetry in many-
particle wavefunctions?
Consider a single-particle quantum state ϕν(r⃗), where ν

refers to labels for the quantum state. The basis for a two-
particle system is then given by

ψ(r⃗1, r⃗2) = 1√
2

[ϕν1(r⃗1)ϕν2(r⃗2) − ϕν1(r⃗2)ϕν2(r⃗1)]

This basis satisfies the anti-symmetry property, and also,
there happens to be a less verbose manner through which
we can express such wavefunctions - Slater’s determinants.
For a generalized N-particle system such that the basis states
are perfectly anti-symmetric under exchanging the labels of
any two particles, the wavefunction can be expressed as

ψ(r⃗1, r⃗2, ..., r⃗N ) = 1√
N !



ϕν1(r⃗1) ϕν2(r⃗1) ... ϕνN (r⃗1)
ϕν1(r⃗2) ϕν2(r⃗2) ... ϕνN (r⃗2)

. . .

. . .

. . .

ϕν1(r⃗N ) ϕν2(r⃗N ) ... ϕνN (r⃗N )


The ’first quantization’ principle cannot be used to satisfac-
torily explain condensed matter systems since calculations
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become cumbersome and expensive as the number of parti-
cles in the system increases, and the representation requires
the number of particles, N , to be fixed. As N approaches
the limit associated with statistical physics, N is allowed
to fluctuate as per the grand canonical ensemble. Second
quantization or occupation number formalism is the stan-
dard way in which many-particle QM is formulated. It is
based on the algebra of ladder operators.

• Second quantization provides a compact way of representing
the many-body space of excitations.

• Properties of operators encoded in a single set of commutation/anti-
commutation relations rather than in some explicit Hilbert
space representation.

• Formalism greatly simplifies actual calculations for purposes
of simulation.

1.1 Single qubit system

Qubit states are labelled by their occupation numbers, |n⟩,
with n = 0, 1 being a quantum number corresponding to
fermionic occupation. The local Hilbert space, H, is 2-
dimensional, being spanned by {|0⟩, |1⟩}. The properties
of the elements of H have been tabulated as follows.

• Orthonormality
⟨0|0⟩ = ⟨1|1⟩ = 1; ⟨1|0⟩ = ⟨0|1⟩ = 0

• Ladder operators
Creation operator, ĉ† |0⟩ = |1⟩; Annihilation operator, ĉ |1⟩ =
|0⟩
However, ĉ |0⟩ = |0⟩, ĉ† |1⟩ = |0⟩
ĉ† = |1⟩ ⟨0|, ĉ = |0⟩ ⟨1|

• Hermitian conjugation
(ĉ†)† = (|1⟩ ⟨0|)† = |0⟩ ⟨1| = ĉ; (ĉ)† = (|0⟩ ⟨1|)† = |1⟩ ⟨0| =
ĉ†

ĉ and ĉ† are not Hermitian operators but rather Hermitian
conjugates of each other.
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• Identity operator
1 = |0⟩ ⟨0| + |1⟩ ⟨1| is defined s.t. 1 |ψ⟩ = |ψ⟩

• Number operators
Define a number operator, n̂ = ĉ†ĉ (n̂ is Hermitian)
n̂ |0⟩ = ĉ†ĉ |0⟩ = 0 · |0⟩ = 0
n̂ |1⟩ = ĉ†ĉ |1⟩ = ĉ† |0⟩ = |1⟩
Hence, n̂ |n⟩ = n |n⟩, where n is the number of e−s in the
system.
The states |0⟩ and |1⟩ are eigenstates of the number opera-
tor, n̂. The eigenvalue n is the so-called occupation number
(it classifies as a quantum number).

• Hamiltonian
Ĥ = En̂; where E represents the single particle energy of
state. Additional terms aren’t needed since it turns out that
n̂ is idempotent, i.e., n̂2 = n̂.
The Hamiltonian and the number operators commute, so
the occupation number basis {|0⟩, |1⟩} are indeed eigen-
states of Ĥ.

• Anti-commutation relations
This is the real deal for us since it encodes the operator
algebra.
ĉ†ĉ1 = |1⟩ ⟨1|; ĉĉ†1 = |0⟩ ⟨0|
=⇒ (ĉ†ĉ+ ĉĉ†)1 = |0⟩ ⟨0| + |1⟩ ⟨1| = 1 =⇒ {ĉ†, ĉ} = 1

Similar anti-commutation relations can be written for ĉ and
ĉ†: {ĉ, ĉ} = {ĉ†, ĉ†} = 0

1.2 Two qubit system

Consider two distinct orbitals, {|0⟩1 , |1⟩1} and {|0⟩2 , |1⟩2}.
We have already established the algebraic properties for
the single qubit system, but what about operations such
as {ĉ†

i , ĉ
†
j}; i , j?

The 4-dimensional state space of a 2-qubit system is spanned
by {|0⟩1 ⊗ |0⟩2 , |0⟩1 ⊗ |1⟩2 , |1⟩1 ⊗ |0⟩2 , |1⟩1 ⊗ |1⟩2}.
The Hilbert space for a N -particle system is defined by the
product of N single-particle Hilbert spaces.
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HN = H ⊗ H ⊗ H... =
N⊗
i=1

Hi

Thus, the N -particle states would be defined as a linear su-
perposition of the basis states of the Hilbert space, HN . The
Fock space (F) constitutes the vector space for any number
of particles and is, thus, defined as

F =
∞⊕
N=0

HN

Now, consider each of the wavefunctions spanning the state
space of the 2-qubit system.

|ψ⟩1 = |0⟩1 ⊗ |0⟩2 = |vac⟩

|ψ⟩2 = |0⟩1 ⊗ |1⟩2 = ĉ†
2 |vac⟩

|ψ⟩3 = |1⟩1 ⊗ |0⟩2 = ĉ†
1 |vac⟩

|ψ⟩4 = |1⟩1 ⊗ |1⟩2 = ĉ†
1ĉ

†
2 |vac⟩

(1)

Now, consider the permutation operator, P̂12, which swaps
the labels of particles 1 and 2. Using the property of wave-
function asymmetry of fermions under interchange of parti-
cles, we can thus claim that

P̂12 |ψ4⟩ = − |ψ4⟩

P̂12(ĉ†
1ĉ

†
2 |vac⟩) = ĉ†

2ĉ
†
1 |vac⟩ = −ĉ†

1ĉ
†
2 |vac⟩

(ĉ†
1ĉ

†
2 + ĉ†

2ĉ
†
1) |vac⟩ = 0 =⇒ {ĉ†

1, ĉ
†
2} = 0

(2)

Similarly, {ĉ1, ĉ2} = {ĉ1, ĉ
†
2} = 0. Compiling these results

formally,

{ĉi, ĉ†
j} = δij (3)

We are now in a position to define the generalized state of
a N -particle system.
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|n1, n2, ..., nN ⟩ = |n1⟩⊗|n2⟩⊗...⊗|nN ⟩ =
N⊗
i=1

|ni⟩ =
N∏
i=1

(ĉ†
i )
ni |vac⟩

Note that we made quite a strong statement: for any N, the
N -body wavefunction can be generated by an application of
a set of N -independent operators to a unique vacuum state.
Using some simple mathematical manipulations, it can be
shown that for i , j, [n̂i, ĉ†

j ] = 0, i.e., they commute. One
could take this even further and show that the occupation
number basis states are indeed the eigenstates of the number
operator, n̂j , with eigenvalue nj .

n̂j |n1, n2, n3, ..., nN ⟩ = nj |n1, n2, n3, ..., nN ⟩ (4)

The total number of electrons in the N-particle system is
then given by the number operator, N̂ =

∑
i n̂i, s.t. N =∑

i ni.

Canonical fermionic
anti-commutation

relations are at the
heart of operator

algebra

1.3 Change of basis

Suppose we wish to transform the creation/annihilation op-
erators ĉ†

λ corresponding to the basis set {|λ⟩} to a different
basis set, {|λ̃⟩}. What will be the functional form of the new
creation/annihilation operators, ĉ†

λ̃
?

Using the property of resolution of the identity operator,
1 =

∑∞
λ=0 |λ⟩ ⟨λ|, one can establish the relations, |λ̃⟩ =∑

λ |λ⟩ ⟨λ|λ̃⟩. The transformation laws are then given by,

ĉ†
λ̃

=
∑
λ

⟨λ|λ̃⟩ ĉ†
λ (5)

ĉλ̃ =
∑
λ

⟨λ̃|λ⟩ ĉλ (6)
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1.4 Representation of operators

Single particle or one-body operators Ô1 acting in a N -
particle Hilbert space, HN , generally take the form Ô1 =∑N
n=1 ôn, where ôn is an ordinary single-particle operator

acting on the n-th particle. A typical example is the kinetic
energy operator T̂ =

∑
n
p̂2

n
2m , where p̂n is the momentum op-

erator acting on the n-th particle. Since we have seen that,
by applying field operators to the vacuum space, we can gen-
erate the Fock space in general and any N -particle Hilbert
space in particular, it must be possible to represent any op-
erator Ô1 using the set of creation/annihilation operators.
Here, we present the formal representation of a one-body
operator using second quantization principles,

Ô1 =
∑
λµν

⟨µ|λ⟩ oλ ⟨λ|ν⟩ ĉ†
µĉν =

∑
µν

⟨µ|ô|ν⟩ ĉ†
µĉν (7)

Formally, the one-body operator, Ô1, scatters a particle from
a state ν into a state µ with probability amplitude ⟨µ|ô|ν⟩.

Two-body operators Ô2 are needed to describe pairwise in-
teractions between particles. Although pair-interaction po-
tentials are straightforwardly included in classical many-
body theories, their embedding into conventional many-body
quantum mechanics is made awkward by particle indistin-
guishability. Here again, we present the formal representa-
tion of a two-body operator using second quantization prin-
ciples without providing a derivation for the same.

Ô2 =
∑
λλ′µµ′

⟨µ, µ′|O2|λ, λ′⟩ ĉ†
µ′ ĉ

†
µĉλĉλ′ (8)

2. Bloch’s Theorem

Periodic potentials are important in condensed matter physics,
and we will be using the Bloch wavefunctions generously
during the analysis of toy models. Secondly, periodic poten-

RESONANCE | February 2024 7



GENERAL ARTICLE

tials will give us our first examples of Hamiltonian systems
with symmetry, and they will serve to illustrate certain gen-
eral principles of such systems.

We wish to solve the one-dimensional Schrödinger equation,

− ℏ
2

2mψ′′ + V (x)ψ = Eψ (9)

where the potential is assumed to be spatially periodic,

V (x+ a) = V (x) (10)

Here a is the lattice spacing or spatial period of the 1-D
lattice. No further assumptions need be made about the be-
haviour of V(x) within any period apart from its periodicity.

Next, we shall make a strong assumption that there is a
super-symmetry that rides over the good ole periodicity of
the lattice points such that the lattice repeats itself after
N lattice spacings. This is equivalent to imposing a pe-
riodic/circular boundary condition on the solutions to the
Hamiltonian.

We introduce the translation operator, T (a), which has the
effect of displacing the wave function by the lattice spacing
a along the x-axis.

T (a)ψ(x) = ψ(x− a) (11)

Functionally, the translation operator is given by,

T (a) = e− iap
ℏ (12)

An easy check will ascertain that this operator commutes
with both kinetic energy, as well as potential energy op-
erators. This means that T(a) commutes with the entire
Hamiltonian,
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[T (a), H] = 0 (13)

Put more generally, H commutes with any power of T(a),
T (a)n = T (na), which is to say that it commutes with the
entire group of symmetry operations generated by T(a).

The fact that H and T(a) commute provides us a powerful
tool to determine the eigenfunctions of H. More often than
not, it is hard to find the eigenfunctions of H, but much
easier to find those for the translation operator. Since we
now know the eigenfunctions of the translation operator, it
makes the search for the eigenfunctions of H easier since
they are a subset of the eigenspace of T(a).

An interesting offshoot
of the Bloch
wavefunction is the
concept of ’crystal
momentum’, which
does not represent the
momentum of the
electron in real space
but rather
encapsulates the effect
of the net external
potential acting on it
without having to
worry about the
internal forces.

Since T(a) is unitary, its eigenvalue τ must be a phase fac-
tor, τ = e−iθ. The angle θ characterizes the eigenvalues of
T(a) and may be restricted to the range −π < θ ≤ π. It is
conventional to write this angle in the form θ = ka, where k
is a quantity with dimensions of wave number, which char-
acterizes the eigenvalue. We now have,

T (a)ψk(x) = ψk(x− a) = e−ikaψk(x) (14)

Equivalently, we can write this as,

ψk(x+ a) = eikaψk(x) (15)

Now we are faced with a dilemma - for any given value of k,
there are functions ψk which satisfy 15, so the spectrum of
T(a) is the entire unit circle in the complex plane. Further-
more, the number of such functions for any value of e−ika is
infinite, so the eigenvalues are infinite-fold degenerate and
the eigenspaces of T(a) are infinite-dimensional. This would
render the entire analysis using translation operators incon-
sequential since it was asserted that this approach would
help limit the space in which we have to search for the eigen-
functions of H. This is exactly where the initial boundary
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condition assuming a super-symmetry comes into play. In
case the lattice repeats itself after N lattice spacings, the
single-valuedness of the wavefunction requires

ψ(x+Na) = ψ(x) (16)

so the eigenvalues of T(a) are phase factors of the form
e− 2nπi

N , for n = 0,..., N-1. In this case, the spectrum of T(a)
is discrete, although each eigenvalue is still infinite-fold de-
generate. Rather than ψk(x), it is often easier to work with
a function uk(x), defined by

ψk(x) = ψk(x)uk(x) (17)

where uk is periodic, uk(x + a) = uk(x). Bloch’s theorem
states that since H commutes with T(a), H possesses eigen-
functions which are of the form of ψk(x), that is, eikx times
a periodic function uk(x).

3. Tight Binding Models

Before moving in to consider Hamiltonians for a system of in-
teracting particles, we wish to propose model Hamiltonians
for non-interacting fermionic systems. Consider, for exam-
ple, the free electron gas, with electrons occupying quantum
states |k⟩ = |nk⟩. The Hamiltonian is given by,

Ĥ =
∑
k

Ek ĉ†
k ĉk =

∑
k

Ekn̂k (18)

where Ek represents the single-particle state of energy cor-
responding to the P.E. associated with orbital |k⟩. It is
straightforward to show that number operator n̂k commutes
with Ĥ; that is, the set {nk} is conserved by Ĥ and can be
classified as the so-called good quantum numbers.

Ĥ |n1, n2, ..., nN ⟩ = En1,n2,...,nN |n1, n2, ..., nN ⟩ (19)
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Figure 1: The pz orbitals of the respective carbon atoms in
benzene interact with their nearest neighbours, forming a de-
localized network of pi-e−s

where En1,n2,...,nN =
∑
i Eini.

Now, we shall introduce an additional layer of complexity
to the problem by accounting for the interaction between
fermionic particles constituting the system. The modified
Hamiltonian is then expressed as,

Ĥ =
∑
i

Eiĉ†
i ĉi +

∑
i,j

tij ĉ
†
i ĉj (20)

where tij is the tunnelling matrix element corresponding to
the tunnelling/hopping of an electron from orbital |i⟩ to or-
bital |j⟩, s.t. ⟨i|Ĥ|j⟩ = tij . Additionally, since the Hamilto-
nian is Hermitian, it places a restriction on the elements of
the tunnelling matrix, namely, tij = t∗ji. Such tight-binding
models can be used to describe many condensed matter and
molecular systems, which include scenarios such as a lattice
where atomic orbitals overlap, and e−s can tunnel/hop from
one orbital to another.

Benzene provides an excellent toy model for studying the
application of tight-binding models. The pz orbitals interact
with only their nearest neighbours, greatly simplifying the
expression for the Hamiltonian associated with the π-bonded
network.
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Ĥπ = E
6∑
i=1

ĉ†
i ĉi + t

6∑
i=1

(ĉ†
i ĉi+1 + ĉ†

i+1ĉi) (21)

The situation is somewhat similar in the case of graphene,
which consists of stacked 2-D hexagonal lattices of carbon
atoms. The Hamiltonian for the π-bonded network is given
by,

Ĥπ = E
∑
i

ĉ†
i ĉi + t

∑
i,j

(ĉ†
i ĉj + ĉ†

j ĉi) (22)

where i, j constitute the indices of nearest neighbours on the
hexagonal lattice.

4. Electronic Bandstructure

Using the results of the tight-binding model (or, more ap-
propriately, the approximations used in the tight-binding
model) and that of Bloch’s theorem, we can analyse the
electronic band structure for a 1-D chain of atoms, followed
by increasingly complex variations of the same.

Consider a linear chain of identical hydrogenic atoms (ns or-
bitals) with individual lattice points separated by a distance
a. From the LCAO theory, the generalized wavefunction of
the system can be expressed as:

ψ = c1ϕ1 + c2ϕ2 + c3ϕ3 + ... =
∑
n

cnϕn =
∑
n

eikxnϕn (23)

where xn is the position of the nth atom. The atoms, being
identical, contribute equally to the LCAO in terms of their
wavefunction amplitude but with different phase factors to
account for their periodic distribution. More formally, this
idea is captured via Bloch’s theorem, which presents a gen-
eralised wavefunction for particles in a periodic lattice:
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ψk(r⃗) = eik⃗·r⃗uk(r⃗) (24)

where uk(r⃗) is called the cell function, and represents atoms
in the unit cell. In our case, the Bloch wavefunction is given
by,

ψk =
N∑
n=1

eiknaϕn (25)

The Bloch wavefunction incorporates the real-space symme-
try of the lattice into the k-space in the sense that for k > π

a ,
the wavefunction merely acquires a global phase, and this
does not affect the expectation value of measurables. The
energy eigenvalue of the Bloch wavefunction serves as a di-
rect measure of the E − k relationship and is given by,

E =
∫
ψ†
kHψkdx∫
ψ†
kψkdx

(26)

Note that we have abandoned the bra-ket notation since I
found the conventional method to be more intuitive in this
case. I might later consider adding a similar analysis but
using the bra-ket notation. Now,

∫
ψ†
kHψkdx =

N∑
n=1

N∑
m=1

ei(n−m)ka
∫
ϕ†
mHϕndx (27)

Applying the constraints of the tight-binding approxima-
tion, the integral term involved in RHS can be simplified
into three distinct cases: α if m = n, i.e., the potential en-
ergy corresponding to each lattice site, β if |m − n| = 1,
i.e., the lattice sites correspond to nearest neighbours, and
0 otherwise.

∫
ψ†
kHψkdx = N(α+ β[e−ika + eika]) = N(α+ 2βcos(ka))

(28)
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∫
ψ†
kψkdx =

N∑
n=1

N∑
m=1

ei(n−m)ka
∫
ϕ†
mϕndx = N (29)

since the integral term in the RHS evaluates as null unless
m = n. Hence, the energy eigenvalue is given by:

Ek = (α+ 2βcos(ka)) (30)

As pointed out earlier, for values of k > π
a , the E−k diagram

can be simply folded over into the region bounded by −π
a <

k < π
a . This region is otherwise known as the first Brillouin

zone.

Next, we add an additional layer of complexity to the exist-
ing system by considering two atoms (not necessarily iden-
tical) per unit cell in a general number of dimensions. Let
us write the trial wavefunction as:

ψk(r⃗) = 1√
N

N∑
n=1

{c1(k)ϕ1(r⃗1 − R⃗n − d⃗1)eik⃗·d⃗1

+ c2(k)ϕ2(r⃗2 − R⃗n − d⃗2)eik⃗·d⃗2} (31)

where N is the number of unit cells (theoretically tending to
∞), and d1, d2 represent the displacement of atomic centres
1 and 2 respectively, w.r.t the centre of the unit cell under
consideration, which itself is located at R⃗n. c1(k), c2(k) are
the contributions of atomic orbitals 1 and 2, respectively,
to the Bloch wavefunction. In order to solve for the eigen-
values of this Hamiltonian, we first multiply both sides of
the Schrödinger equation by 1√

N

∑N
m=1 e

−ik⃗·R⃗mϕ†
1(r⃗1 −R⃗m−

d⃗1)e−ik⃗·d⃗1 , then integrate over all space. Repeat the same
procedure by premultiplying the equation with a similar
term involving ϕ2, and integrate over the real space. These
will then provide us with two sets of equations that need
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to be solved in the matrix form. Denote α1 =
∫
ϕ†

1Hϕ1dV ,
α2 =

∫
ϕ†

2Hϕ2dV , and β =
∫
ϕ†

1Hϕ2dV =
∫
ϕ†

2Hϕ1dV (for
ϕ1, ϕ2 being the nearest neighbours). Then, we obtain the
following set of equations:

α1c1(k) + β
∑
n

eik⃗· ⃗dnnc2(k) = E(k)c1(k)

α2c2(k) + β
∑
n

e−ik⃗· ⃗dnnc1(k) = E(k)c2(k)
(32)

where dnn is the distance between nearest neighbours in the
lattice. In matrix form, these equations can be represented
as,

[
α1 βg(k)

βg†(k) α2

] [
c1(k)
c2(k)

]
= E(k) ·

[
c1(k)
c2(k)

]
(33)

where g(k) =
∑
m e

ik⃗·d⃗m . Solving for the eigenvalues of the
matrix, we obtain,

E = α1 + α2
2 ±

√
(α1 − α2)2 + 4β2|g(k)|2

2 (34)

Under the limit that the atoms in the unit cell are identical,
α1 = α2 = α and equally spaced at a distance a apart, the
energy eigenvalues simplify to E(k) = α± β(e−ika + eika) =
α ± 2βcos(ka). Although the scenario is the same as that
of a 1-D chain of identical atoms, the unit cell, in this case,
contains two atoms per cell. If the atoms are non-identical,
then the degeneracy of the non-bonding orbital is broken,
and there exists a band gap in the material.

While this detailed mathematical analysis is useful for phys-
ical intuition, we need to generalize this process to basis
sets other than the simple 1-D chain of atoms that we have
been working on. In order to do so, we have to discretize
the Schrödinger’s equation such that we can formulate the
Hamiltonian and the corresponding eigenvectors as matrices.
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This is also useful as a computational tool, since equations
need to be discretized in order to run simulations. However,
its utility is not merely limited as a computational tool-
it will be shown that the idea of concept of the wavefunc-
tion being a superposition of basis functions is essential to
the structure of quantum mechanics in general. Consider,
for example, the classical problem of a particle trapped in
a box bounded by infinitely high walls. The Schrödinger’s
equation governing the system is given by

− ℏ
2

2m
d2ψ

dx2 + U0ψ = Eψ (35)

The ansatz satisfying this equation can be discretized as
ψn = ψ0e

ikna via the Bloch’s theorem (observe that the basis
set is singleton {ψ0}). The Hamiltonian can be discretized
as follows

dψ

dx
|x=n =

ψ|x=n+ 1
2

− ψ|x=n− 1
2

a

d2ψ

dx2 |x=n =
dψ
dx |x=n+ 1

2
− dψ

dx |x=n− 1
2

a
= ψn+1 − 2ψn + ψn−1

a2
(36)

Setting U0 = 0 and selecting a discrete lattice consisting of
100 points, we have the discretized Hamiltonian given by

H =

1 2 . . . 99 100
1 2t0 −t0 . . . 0 0
2 −t0 2t0 . . . 0 0
...

99 0 0 . . . 2t0 −t0
100 0 0 . . . −t0 2t0

(37)

where t0 = ℏ2

2ma2 . The set of energy eigenvalues is given by
2t0(1−cos(kna)), such that kn = nπ

L . This result differs from
the solution obtained analytically unless kna = nπa

L << 1,
as shown in Fig. 2.
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Figure 2: Numerical evaluation yields 100 eigenvalues that
follow the analytical result well for low energies but deviate
at higher energies because the wavefunctions oscillate too
rapidly.

The process of discretization did not yield an accurate ana-
lytical answer in this case since the setup itself is intrinsically
continuous. However, for the problems we are interested in,
this process yields fairly accurate solutions since the peri-
odic nature of the lattice then facilitates its description as a
discretized system.

4.1 Toy examples

Consider a toy one-dimensional solid composed of N atoms,
separated by a distance a. Assuming one orbital per atom,
the N ×N Hamiltonian matrix can be written as follows:

H =

|1⟩ |2⟩ . . . |N − 1⟩ |N⟩
|1⟩ E0 Ess . . . 0 Ess
|2⟩ Ess E0 . . . 0 0
...

|N − 1⟩ 0 0 . . . E0 Ess
|N⟩ Ess 0 . . . Ess E0

(38)

RESONANCE | February 2024 17



GENERAL ARTICLE

Figure 3: Bandstructure for a one-dimensional solid with
E0 = 0 and Ess = −1.

The off-diagonal elements at the top-right and the bottom-
left are to account for the fact that we are applying the
periodic boundary condition. The set of equations (all iden-
tical in form) that we obtain by applying [H]ψ = Eψ can
be written as (n = 1, 2, . . . N)

Eψn = E0ψn + Essψn−1 + Essψn+1

This set of equations can be solved analytically by the ansatz
(via Bloch’s Theorem):

ψn = ψ0e
ikna where ka = n2π/N (39)

Substituting the ansatz into 4.1, we obtain

E = E0 + 2Esscos(ka) (40)

It would seem logically inconsistent that while we started
out with a N × N Hamiltonian and were expected to find
N discrete eigenvalues, we have instead found a continuous,
periodic function apparently implying that we have infinitely
many possible eigenvalues. Due to the discrete nature of
the lattice, values of ka that differ by 2π represent identical
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Figure 4: A one-dimensional solid whose unit cell consists
of two atoms.

states, which can be verified by considering the ansatz (k′ =
k + 2π/a):

ψ
′
n = ψ0e

ik
′
na = ψ0e

iknaein2π

ψ
′
n = ψ0e

ikna = ψn
(41)

Since only the values of ka within a range of 2π yield inde-
pendent solutions, in principle, we could take any range of
size 2π, and it would be physically acceptable. It is common
to restrict ka to the range −π < ka < π, otherwise known
as the first Brillouin zone. Note that while we have now lim-
ited the possible eigenvalues within the first BZ, the contin-
uous function seemingly implies that there are still infinitely
many eigenvalues within the zone itself. This issue can be
resolved by taking into consideration the periodic boundary
condition applied to the Hamiltonian initially: ψ0 = ψN .
This implies

ψ0 = ψN = ψ0e
ikNa

ka = 2π
N
ν

(42)

where ν ∈ Z. Thus, we end up with N discrete energy eigen-
values, all bound within the first Brillouin zone, as intended
initially.

Consider next a one-dimensional solid whose unit cell con-
sists of two atoms as shown in Fig. 4.

Again, considering one orbital per atom, the matrix repre-
sentation of the Hamiltonian is given by
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H =

|1A⟩ |1B⟩ |2A⟩ |2B⟩ |3A⟩ |3B⟩ . . .

|1A⟩ E0 Ess 0 0 0 0 . . .

|1B⟩ Ess E0 E
′
ss 0 0 0 . . .

|2A⟩ 0 E
′
ss E0 Ess 0 0 . . .

|2B⟩ 0 0 Ess E0 E
′
ss 0 . . .

|3A⟩ 0 0 0 E
′
ss E0 Ess . . .

|3B⟩ 0 0 0 0 Ess E0 . . .

(43)

Combine the elements of the matrix into (2 × 2) blocks and
rewrite it in the form

[H] =

|1⟩ |2⟩ |3⟩ . . .

|1⟩ H11 H12 0 . . .

|2⟩ H21 H22 H23 . . .

|3⟩ 0 H32 H33 . . .

(44)

where

Hnn =
[
E0 Ess
Ess E0

]
Hn,n+1 =

[
0 0
E

′
ss 0

]
Hn,n−1 =

[
0 E

′
ss

0 0

]

The matrix equation ([H]ψ = Eψ) can be written in the
form

Eϕn = Hnnϕn +Hn,n−1ϕn−1 +Hn,n+1ϕn+1 (45)

where {ϕn} represents a (2 × 1) column vector (this is in
accordance with the fact that we have two basis states). Yet
again, the ansatz for solving this set of equations is given by

{ϕn} = {ϕ0}eikna (46)

Substituting the ansatz, we have

E{ϕ0} = Hnn{ϕ0} +Hn,n−1e
−ika{ϕ0} +Hn,n+1e

ika{ϕ0}

20 RESONANCE | February 2024



GENERAL ARTICLE

Figure 5: Bandstructure for the "dimerized" one-dimensional
solid plotted using E0 = 0, Ess = 2, E′

ss = 1.

that is

E{ϕ0} =
[

E0 Ess + E
′
sse

−ika

Ess + E
′
sse

ika E0

]
{ϕ0}

The energy eigenvalues of the system are given by

E = E0 ±
√
E2
ss + E′2

ss + 2EssE′
sscos(ka) (47)

The E(k) diagram for the solid is shown in Fig. 5.

It is energetically favourable for a uniform, one-dimensional
chain of atoms, which we considered earlier to distort into
the structure shown in Fig. 4– a phenomenon referred to as
Peierls’ distortion.

4.2 General result

We shall now generalize this procedure for calculating the
bandstructure of any periodic solid with an arbitrary num-
ber of basis functions per unit cell. Consider any particular
unit cell n connected to its neighboring unit cells m by a
Hamiltonian [Hnm] of size (b × b), b being the number of
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basis functions per unit cell. The overall matrix equation
can be written as

E{ϕn} = [Hnm]{ϕm} (48)

where {ϕm} is a (b × 1) column vector denoting the wave-
function in unit cell m. The ansatz suggested for solving
this is given by

{ϕm} = {ϕ0}eik⃗·d⃗m (49)

Substituting the ansatz into the original matrix equation,
we get

E{ϕ0} = [h(k⃗)]{ϕ0} with [h(k⃗)] =
∑
m

[Hnm]eik⃗·d⃗m (50)

The summation runs over all neighbouring unit cells (includ-
ing itself) with which the unit cell n has any overlap. In light
of this, consider a 2-D lattice, which has been discretized
into M ×N points. Similar to the case of the 1-D chain, the
first Brillouin zone is bound within −π/a < kx < +π/a and
−π/b < ky < +π/b.

4.3 Graphene

Graphene consists of a single layer of a hexagonal lattice of
carbon atoms. The unit cell has to be chosen carefully in
this case since adjacent carbon atoms aren’t in an identical
environment in the graphene lattice– one of the atoms sees
two neighbours to its right and one neighbour to the left,
while the situation is vice-versa for the adjacent atom. But
if we lump these two adjacent atoms into a unit cell as shown
in Fig. 6, then the lattice of unit cells is periodic, and every
site has an identical environment.
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Figure 6: Unit cell of two atoms in the graphene lattice.

It turns out that the 2pz orbital is sufficient to describe the
bandstructure of graphene since the contribution of the 2s,
2px, and 2py orbitals is insignificant in the vicinity of the
Fermi energy. The resulting (2 × 2) [h(k⃗)] is given by

[h(k⃗)] =
[

0 −t
−t 0

]
+

[
0 −teik⃗·a⃗1

0 0

]
+

[
0 −teik⃗·a⃗2

0 0

]
+[

0 0
−te−ik⃗·a⃗1 0

]
+

[
0 0

−te−ik⃗·a⃗2 0

]

where a⃗1 = x̂a + ŷb, a⃗2 = x̂a − ŷb with a = 3a0/2, b =√
3a0/2. On simplifying the expression,

[h(k⃗)] =
[

0 h0
h∗

0 0

]
(51)

where h0 = −t(1 + 2eikxacos(kyb)). The energy eigenvalues
are given by

E = ±|h0| = ±t
√

1 + 4cos(kxa)cos(kyb) + 4cos2(kyb)
(52)

RESONANCE | February 2024 23



GENERAL ARTICLE

Figure 7: Bandstructure of graphene.

Figure 8: Grayplots for the conduction band and valence
band of graphene, respectively. Note the dark (or white)
nodes which represent ’valleys’ in the bandstructure.
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5. Epilogue

While the current document encompasses a variety of top-
ics, a significant volume of work remains to be done in
Non-equilibrium Green functions (NEGF) formalism and
the Bardeen-Cooper-Schreiffer (BCS) theory of supercon-
ductivity. I plan on adding content and simulations related
to the same in the future, with my current target being run-
ning some fundamental NEGF simulations using the kwants
package while working on the theory of S-N, S-N-S, and N-
S-N junctions alongside.
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