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1 Charge Carriers in Semiconductors

1.1 Energy bands

In order to fully understand the physics behind semiconductors, we need to get a clear
understanding of the manner in which electrons are distributed within its crystal. Energy
band diagrams serve this purpose by acting as an approximate visual guide to show how
electrons are distributed in the various energy states available.

Consider two carbon atoms(1s22s22p2)initially separated by a large distance from each
other. In such a state, the electrons in the atoms occupy discrete,well-defined energy lev-
els. However, as the two atoms come closer, this view no longer holds true. At a finite
distance(comparable to atomic sizes) between the two atoms, their wavefunctions overlap
strongly and the discrete energy states change into a near-continuum energy state dis-
tribution. As more and more atoms get involved in the crystal, the overlapping of their
wavefunctions ultimately leads to the formation of ’energy bands’, that are composed of
numerous discrete energy levels but appear as a continuous band due to the large number
of atoms involved.

Energy band structure in a crystal of carbon atoms
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Energy band diagram in semiconductors

When electrons are excited to the empty energy level, they can freely move about
under external influence, and hence, conduct electricity. This band is therefore known as
the conduction band. The energy band gap for semiconductors is intermediate between
that of conductors and insulators-which explains their nomenclature.

The energy band gaps for some of the common semiconductors are: Si-1.1 eV, Ge-0.7
eV, GaAs-1.42 eV, etc. At room temperature of around 300 K, the kinetic energy of
an electron is of the order of kBT , where kB represents the Boltzmann’s constant. On
calculating, this value turns out to be around 26 meV, far too less for an electron to be
excited to the conduction band from the valence band as per the rules of classical physics.
However, on the atomic scales, where the rules of quantum mechanics dominate, there is
still a non-zero probability for the electron to be excited from the valence band to the
conduction band.

1.1.1 Physical model of Semiconductor lattice

Even though it may theoretically seem quite difficult to analyse the motion of an electron
in the semiconductor lattice using quantum mechanics, it actually turns out that relatively
simple physical models can appropriately describe the electron’s motion to high degree
of accuracy and serve nearly all our practical purposes.

Let us consider a free electron moving along the x-axis. The motion of the electron
can be described by an E-k diagram which plots energy of the electron as a function of
its wave-vector, k (The relation is established using De-broglie’s hypothesis).
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E = h̄2k2/2me

where me represents the rest mass of electron.

E-k diagram for a free electron

However, as we can see, inside a semiconductor lattice, the assumption of a free
electron no longer holds true. The electron in a crystalline lattice can be thought of
as experiencing a periodic potential because of the regular, organised arrangement of
atoms. As of now, we will consider the 1-D case for simplicity and the 3-D case follows
as a natural extension of our analysis.

The 1-D crystalline lattice can be imagined of being composed of a series of Dirac-delta
potential wells, each centered at one of the atoms in the lattice and at a constant distance
from each other, known as the lattice constant. Now, having established a feasible model
for the lattice, we can solve for the wavefunction of electron inside this 1-D lattice using
Bloch’s Theorem. This model of particle trapped inside a one-dimensional lattice is also
known as the Kronig-Penney model.

5

https://en.wikipedia.org/wiki/Bloch%27s_theorem
https://en.wikipedia.org/wiki/Electronic_band_structure


Periodic potential inside the crystal lattice

E-k diagram for an electron inside the lattice

As we can observe, there are several discontinuities in the graph at quantized values
of k. However, for most of the practical semiconductor devices, the majority of electrons
lie in the range of −π/a < k < π/a, otherwise known as the first Brillouin zone. The
energy of an electron near the bottom of the Brillouin region can be expanded as a Taylor
series:

E = EC + [(dE
dk
)|k=0]k + [(1

2
d2E
dk2

|k=0)]k
2 +HOTs
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where HOTs refers to higher-order terms. The derivatives are evaluated at k = 0, which
gives us dE

dk
= 0. Neglecting the HOTs gives us:

E = EC + [(1
2
d2E
dk2

|k=0)]k
2

Note that we can justify the fact that we neglected the higher order terms as long
as we stay close to the region wherein the E-k graph is parabolic in nature. In fact, in
general, even dE

dk
also need not be zero. Thus, the effective mass(m∗) of the electron in

this parabolic region can be expressed as:

m∗ = h̄2/∂2E
∂k2

The need for this theoretical construct of ’effective mass’ arises since we would wish
to apply the usual equations of electrodynamics to the electrons inside the semiconductor,
which are in fact, quantum mechanical particles. In doing so, we encapsulate the quantum
mechanical properties in the effective mass so that the electrons and holes can be treated
as ”quasi-free” carriers in most computations.

1.1.2 Concept of holes

When an electron is excited from the valence band to the conduction band, it leaves
behind an ”empty space” in the energy state it previously occupied. In such a situation,
when an external electric field is applied, the electron adjacent to the hole moves forward
to fill the empty slot. This process continues and thus creates an electric current due to
the net motion of the electrons. Physically, this is equivalent to a positive charge of the
same magnitude as the electronic charge, constituting a current. Such a quasi-particle
has been assigned the name ’holes’ and constitute another type of carrier found in a
semiconductor.

1.2 Direct and Indirect band-gap semiconductors

In general, the E-k diagram of an electron inside the semiconductor is a far more complex
surface, which should be visualised in three dimensions- the reason being that k in general,
represents the 3-D wave vector of the electron. Since the periodicity of most lattices is
different in various directions, the E-k diagram must be plotted for the various crystal
directions.

In certain semiconductors, for e.g. GaAs, the minima in the conduction band and the
maxima in the valence band occur both for the same value of k, namely k = 0. On the
other hand, in semiconductors such as Si, the valence band maximum is at a different
value of k than its conduction band minimum. Thus, an electronic transition from the
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conduction band minima to the valence band maxima in the first case occurs without any
change in k value, whereas the second class of semiconductors do require some change in
k for the transition to be possible. Thus there are two classes of semiconductor energy
bands; direct and indirect band-gap semiconductors.

The distinction between direct and indirect band-gap materials is evident from their
respective applications: in a direct band-gap material like GaAs, the electron can directly
fall from the conduction band minima to the valence band maxima, giving off the energy
difference as photon energy. Hence, such materials are used in LEDs and devices requiring
light output. On the other hand, in an indirect band-gap material like Si, the electron
must undergo a change in k, and consequently, a change in its momentum and energy.
In an indirect transition, part of the energy is eventually given up as heat to the lattice
rather than being converted into photonic energy. So, such materials are unsuitable for
light-emitting purposes.

Direct and indirect band-gap transitions
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1.3 Carrier Statistics

Electrons and holes are fermions- meaning they have half-odd-integer spin and follow
Pauli’s exclusion principle. The statistical rules governing the dynamics of an ensemble
of such fermions are known as the Fermi-Dirac statistics.

1.3.1 Fermi-Dirac Statistics

The probability distribution governing Fermi-Dirac statistics is derived by using the fact
that the multiplicity of the system should be maximized. On doing this, we obtain the
probability distribution(as a function of energy) as:

f(Ei) = (1 + exp(Ei − EF/kBT ))
−1

where EF represents the Fermi energy level.

Probability distribution graph of F-D statistics

In order to estimate the number of particles occupying a given energy state, we also
need to estimate the density of states function, g(E) which represents the degeneracy
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of a particular energy level. The density of states functions for the C.B. and V.B. of
semiconductors is as follows:

g(E) = 4π
h3 (2m

∗
e)

3/2
√
E − Ec, for C.B.

g(E) = 4π
h3 (2m

∗
h)

3/2
√
Ev − E, for V.B.

where m∗
e and m∗

h represent the effective masses of the electron and hole, respectively.

Spoken in simpler terms, degeneracy refers to the number of available states that a
particular energy level (E to E+dE) has to offer; while the probability distribution function
refers to the fraction of states occupied out of the degenerate states at a particular energy
level (again, E to E+dE). Note that we cannot explicitly (it being physically insensible)
state that the number of states at the energy level E is such and such- thus the need for
the energy gap, dE.

1.3.2 Carrier concentrations

Having obtained the density of states function and probability distribution function,
we can easily obtain the total number of electrons and holes in the C.B. and V.B.,
respectively. The corresponding equations are given as:

ne =
∫∞
Ec

g(E)f(E) dE

nh =
∫ Ev

−∞ g(E)f(E) dE

As a side note, the integrals
∫∞
Ec

g(E) dE and
∫ Ev

−∞ g(E) dE gives us the total number
of available energy states in the conduction band and the valence band, respectively.

These integrals are of the form of Fermi-Dirac integrals of 1/2 order and are expressed
as:

ne = NcF1/2(
EF−Ec

kBT
)

nh = NvF1/2(
Ev−EF

kBT
)

where Nc and Nv are known as the effective conduction band density of states and F1/2(x)
represents the Fermi integral of order 1/2. Their formulae are given as follows:
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Nc = 2(2πm
∗
ekBT
h2 )3/2

Nv = 2(
2πm∗

hkBT

h2 )3/2

Physically, these quantities represent the number of electrons just at the edge of the
valence band or conduction band.

At equilibrium, if no external impurities have been added to the semiconductor lattice,
it is known as an intrinsic semiconductor and in such cases, ne and nh are both equal to
ni, termed as the intrinsic carrier concentration. In a semiconductor, ni represents the
minimum number of charge carriers that are present in it without any sort of external
influence.

In order to get an estimate of the value of ni, certain approximation methods can be
used to evaluate the Fermi-Dirac integral associated with ne and nh. If Ec −EF ≥ 3kBT
or EF − Ev ≥ 3kBT , we can approximate the integrals as:

F1/2(
EF−Ec

kBT
) ≈ exp(EF−Ec

kBT
)

F1/2(
Ev−EF

kBT
) ≈ exp(Ev−EF

kBT
)

For an intrinsic semiconductor, the value of EG is considerably larger than 3kBT . So
the above approximation holds true for quite a large number of commonly used semicon-
ductor materials. Hence, to find ni, approximate the expression as:

ne ≈ Ncexp(
EF−Ec

kBT
)

nh ≈ Nvexp(
Ev−EF

kBT
)

On multiplying the two expressions, one can observe that:

np = n2
i = NcNvexp(

−EG

kBT
)

This is one of the most important relations governing carrier concentrations in semicon-
ductor physics, otherwise known as the Law of mass action.

There might be a fleeting misconception in the reader’s mind that the Fermi energy
level, EF is equal to Ec+Ev

2
for intrinsic semiconductors. However, the electron and hole

effective masses need not necessarily be equal in the material due to which there is
(usually) a small energy difference between the two energy levels.
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no = po = ni = Ncexp(
EF−Ec

kBT
) = Nvexp(

Ev−EF

kBT
)

Also,

Nc/Nv = e
Ec+Ev−2EF

kBT

Solving for EF gives us

EF = Ec+Ev

2
+ 3

4
kBT ln(

m∗
h

m∗
e
)

This means that EF is offset from midgap by the term 3
4
kBT ln(

m∗
h

m∗
e
), which is usually

pretty small.

1.3.3 Kinetic energy of carriers

The potential energy of an electron (or a hole) in the conduction band (or in the valence
band) is constant and equal to Ec (or Ev). Thus, the kinetic energy of the electron at
energy level E (for simplicity’s sake, we will consider only one kind of charge carrier
and extend the result quite naturally) will be given by EK = E − Ec. We can calculate
the average kinetic energy of the electron and its average speed through the expectation
values of EK and

√
E − Ec, respectively. The average K.E. and the average speed are

given by:

< EK >= 3
2
kBT

< v >=
√

8kBT
πm∗

e

Notice the strong analogy with the equivalent quantities in the gaseous state, with
the only difference being that the inertial mass has been replaced by effective mass, m∗.

1.4 Doping of Semiconductors

As we know, one of the most striking features of semiconductors is their ability to change
their conductivities over a wide range of orders of magnitudes. This is achieved by doping
of semiconductors. Doping essentially involves the addition of extraneous impurities into
the semiconductor lattice which infuse the lattice with a particular kind of charge carrier
and thus, decrease the concentration of the other.
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Let us consider an example of n-type doping where phosphorus(P) atoms are added
to a crystalline lattice of silicon(Si) atoms. Since P has one extra electron in its valence
band as compared to Si, this electron cannot be accommodated under covalent bonding
phenomena. Hence, the effective nuclear attraction experienced by the extra electron
decreases and it now has a high probability of being excited into the conduction band
through thermal excitation. This entire process effectively creates a positively charged,
immobile ion centre at the site of the P-atom. The same goes for an electron-deficient
material such as boron(B) added to the semiconductor lattice- except that this generates
a hole instead of an electron. Through doping, one can reduce the concentration of mi-
nority charge carriers drastically. Consider a sample of Si crystal which is n-type doped
using P atoms such that ND = 1017/cm3 and ni = 1.50 × 1010/cm3. Here, the minority
carrier concentration is given by p = n2

i /ND (since ND >> ni, we can approximate ma-
jority carrier conc. as ND) which is equal to 2.25 × 103/cm3, about 1014 times smaller
than the majority carrier concentration. However, despite this, there is a theoretical limit
on the maximum levels of doping in a semiconductor crystal since higher levels of doping
can lead to higher rates of recombination of charge carriers, thereby neutralising the high
carrier concentrations.

n-type and p-type doped semiconductor crystal

In order to understand doping effects, we must also analyze the effects of external
impurities on the band diagram of the semiconductor. It turns out that on doping, the
Fermi level inside the semiconductor changes, which is a consequence of the deviation of
carrier concentrations from the intrinsic carrier concentration, ni. In an n-type doped
material, the EF gets closer to the conduction band whereas in a p-type doped material,
EF gets closer to the valence band. As a result, from the formulae for ne and nh, we can
observe that ne > nh for an n-type material and vice-versa for a p-type material as we
expected physically too.
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n-type and p-type doped semiconductor crystal

The abovementioned diagram illustrates the fact that on doping the material, we get
additional dopant energy levels(ED or EA), which are quite close to the C.B. or V.B.,
respectively. Thus, these dopant energy bands can quite freely donate charge carriers
even at room temperature, since the energy difference is so low as compared to kBT .

The exact relation between n, p, NA, ND(without the assumption that ND >> ne or
NA >> nh) can be established using the concept of charge neutrality and the relation
n · p = n2

i . Thus, the equation goes as follows:

n+N−
A = p+N+

D

Assuming complete ionization of donor and/or acceptor atoms, N−
A = NA and N+

D = ND.
Now, substituting n · p = n2

i in the equation,

n2
i

n
+ND = n+NA

n2 + n(NA −ND)− n2
i = 0

On solving this quadratic equation, we obtain:

n =
−(NA−ND)+

√
(NA−ND)2+4n2

i

2

Similarly,

p =
−(ND−NA)+

√
(ND−NA)2+4n2

i

2

Earlier we have seen that under certain conditions, the Fermi-Dirac integral involved
in ni can be simplified. A relatively advanced approximation method also covers the cases
when Ec−EF ≤ 3kBT or EF−Ev ≤ 3kBT , also known as the Joyce-Dixon approximation.
According to this,
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ln( n
Nc
) + 1√

8
n
Nc

= EF−Ec

kBT

ln( p
Nv

) + 1√
8

p
Nv

= Ev−EF

kBT

A side note: From fundamental physical principles, we know that,

σ = nqµn + pqµp

where σ is the conductivity of the material.

2 Drift and Diffusion processes of Carriers

The two major processes through which an electric current flows inside the semicon-
ductor is by drift and diffusion processes. While the process of drift is fundamentally
similar in both conductors and semiconductors, diffusion is something that is unique to
semiconductors.

2.1 Drift and mobility of carriers

Electrons and holes that are undergoing random thermal motion inside the semiconductor
cannot conduct electricity since their net displacement over a long interval of time is zero.
Under application of an external electric field, the random thermal walk of electrons is
superimposed with a net displacement due to the electric field’s influence and thus, can
constitute a current.

Electron undergoing collisions with atoms in the lattice
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During the random thermal walk, electrons interact with the lattice in two manners- i)
through collision with vibrating atoms in the lattice, ii) through electrostatic interaction
with ionized impurities. The ’collisions’ here merely refer to the interaction of the electron
with a potential field and not to any form of physical collision taking place. Vibrating
atoms interact with the electrons and holes in the lattice through particles known as
’phonons’.

Using the relation between drift velocity and applied electric field, we know that:

v = ( qτ
m∗ )E

where τ represents the average time between successive collision events and m∗ represents
effective mass of the electron. The quantity qτ

m∗ represents ’mobility’ of the carrier inside
the semiconductor.

Despite the fact that drift velocity and electric field are directly proportional to each
other, at very high field values the drift velocity saturates to a maximum possible velocity,
vsat. This is because with increase in field values, the frequency of collisions with lattice
increases manifolds and this acts as a limiting factor for drift velocity. Typical mobility
values for semiconductors are usually in the range of 200-400 cm2V −1s−1. However, novel
materials like graphene can have very high values of mobility, typically in the range of
50,000-100,000 cm2V −1s−1.

The two factors affecting mobility- collisions with the lattice and coulombic interaction
with ionized centres behave quite differently as the temperature varies.

(i) Atomic vibrations: As temperature increases, electrons collide more frequently
with atoms, hence their mobility due to atomic vibrations decreases.

(ii) Ionized atoms: As temperature increases, the thermal velocity of the electrons
increases and they find it easier to overcome the Coulombic barrier of ionized dopant
atoms. Hence, the mobility due to ionized impurities increases with increasing tempera-
ture.

The net mobility (µtot), mobility due to phonon’s interaction (µphonon) and mobility
due to ionized impurities (µI.Imp) are related as:

µ−1
tot = µ−1

phonon + µ−1
I.Imp

16

https://en.wikipedia.org/wiki/Phonon
https://en.wikipedia.org/wiki/Graphene


Variation of mobility with temperature

The drift process also depends upon the electric field inside the material- at high
electric fields, the drift velocity tends to saturate.

v = µE =
µlf

1+E/Ec
E

where µlf is the carrier mobility at low field magnitude, and Ec is known as the ’critical
electric field’.

Taking into account both kinds of carriers, the net drift current, Jdrift can be repre-
sented as:

Jdrift = Jn + Jp = qnvn + qpvp = (qnµn + qpµp)E

2.2 Generation-Recombination processes

Generation refers to the process wherein we create an electron-hole pair (EHP) from
excitation of an electron from the valence band to the conduction band. Recombination
refers to the process wherein an electron from the conduction band is moved to the valence
band, thus annihilating the EHP and releasing energy in the process.

Although the processes of generation-recombination take place intrinsically in a semi-
conductor, their rates can be increased by external factors such as heat, light,etc. At
equilibrium and in the absence of any external stimuli, the rates of recombination and
generation are exactly equal to each other, and hence, there is a constant carrier concen-
tration w.r.t time in the semiconductor throughout.
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2.2.1 Direct recombination

Semiconductors can be broadly classified under two categories- direct band-gap semicon-
ductors and indirect band-gap semiconductors. The essential difference between the two
is that in direct band-gap materials, there are no intermediate energy levels (also known
as traps) to wherein the electron may transition while being excited from the V.B. to
C.B.. Direct band-gap materials are useful for light emission since nearly all the energy
released during transition is in the form of photon energy, hν (where hν = EG). Hence
most of the materials used in LEDs such as GaAs, GaN, InGaN, etc. are direct band-gap
materials.

2.3 Diffusion of carriers

Diffusion of charge carriers constitutes the diffusion current in semiconductors. It occurs
due to the non-uniform, space-varying concentration of charge carriers (which might oth-
erwise be at equilibrium). This process of diffusion is described by Fick’s law. In order
to understand the process, consider the graph below depicting a non-uniform carrier con-
centration which varies along the x-direction (uni-dimensional diffusion).

Graph showing variation of carrier concentration with x-coordinates

Consider the graph to be made up of a number of smaller rectangles, each of width
l, where l represents the average distance covered by the electrons between subsequent
collisions. Now, consider the two small rectangles (1) and (2) shaded out in fig.(a).
Let the electron concentrations in (1) and (2) be n1 and n2, respectively. Let τ be
the relaxation time (average time between successive collisions). Consider the common
boundary between the two rectangular bars. The net flux of electron through this cross
section is non-zero since the carrier concentration is different on both sides. At any
moment of time, about half of the electrons enclosed within the rectangular regions
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would be crossing the boundary from each side. Hence, the net flux through the surface
can be expressed as:

ϕn(xo) =
l
τ
n1−n2

2

Using fundamental ideas of calculus, it can be shown that:

n1 − n2 =
n(x)−n(x+∆x)

∆x
l

Therefore,

ϕn(xo) =
l
2

2τ
n(x)−n(x+∆x)

∆x
l

In the limit of ∆x → 0, the expression can be further simplified as:

ϕn(xo) = − l
2

2τ
dn(x)
dx

The quantity l
2

2τ
is also known as the electron diffusion coefficient, Dn. From the minus

sign, we may infer that the flux of the electrons is from regions of higher concentration
to regions of lower concentration. Similar equations can also be written for holes, with
minor changes in variables.

ϕn(xo) = −Dn
dn(x)
dx

ϕp(xo) = −Dp
dp(x)
dx

Now that we have the equations for carrier flux through the boundary, one can easily
define the current density at any given point. Therefore,

Jn = (−q)(−Dn
dn(x)
dx

) = qDn
dn(x)
dx

Jp = (q)(−Dp
dp(x)
dx

) = −qDp
dp(x)
dx

Therefore, the net diffusion current density is given as:

Jdiff = Jn + Jp = qDn
dn(x)
dx

− qDp
dp(x)
dx
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Now that we have derived both the drift as well as diffusion components of the current,
we are in a position to write the expression of net current in a semiconductor:

Jn = nqµnE + qDn
dn(x)
dx

Jp = pqµpE − qDp
dp(x)
dx

where Jn and Jp are the contributions of electrons and holes, respectively, to the net
current density.

2.3.1 Einstein Relation

Einstein relation acts as a link between the drift and diffusion currents in a semiconductor
at equilibrium through which no net current is flowing. As we know,

n(x) = Ncexp(
EF−Ec(x)

kBT
)

E(x) = 1
q
(dEc(x)

dx
)

where E(x) represents the electric field inside the semiconductor due to the slope in the
energy levels of C.B. and V.B.. Now, equating the sum of drift and diffusion currents of
the individual carriers to zero, we obtain,

qDn
dn(x)
dx

+ qµnn(x)E(x) = 0

From the expression for n(x), we obtain,

dn(x)
dx

= Nc(− 1
kBT

)exp(EF−Ec(x)
kBT

)dEc(x)
dx

= n(x)(− 1
kBT

)dEc(x)
dx

Substituting back into the original equation,

Dnn(x)(− 1
kBT

)dEc(x)
dx

+ µnn(x)
1
q
dEc(x)

dx
= 0

Dn = kBT
q
µn, Dp =

kBT
q
µp

This relation between diffusion coefficients and mobility suggests that diffusion and drift
processes are both interrelated.

Using the Einstein relation, we can more compactly express the electron and hole
currents as:

Jn = qµn(nE + kBT
q

dn(x)
dx

)

Jp = qµp(pE − kBT
q

dp(x)
dx

)
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2.3.2 Continuity equation

The continuity equation is one of the most fundamental equations in physics and engi-
neering applications. While continuity equation for flow of currents inside conventional
conductors is quite simple, in semiconductors, it is more involved since generation, and re-
combination processes may produce/annihilate charge carriers inside the semiconductor,
so that current density may not be constant over space.

Consider a rectangular block of semiconductor slab and take a thin slice of it of thick-
ness ∆x, perpendicular to the current density vector. The rate of increase of conduction
band electrons inside this differential volume is given by:

dn
dt

= 1
q
dJn(x)

dx
+ (Gn −Rn)

where Gn is the electron generation rate and Rn is the electron recombination rate. The
differential term expresses the difference in electron flux at either end of the region of
length dx.

Let Gth be the rate of thermal generation of electrons (due to phonons), and Gop be
the rate of optical generation of electrons (due to photons). Then the total generation
rate, Gn is given by-

Gn = Gth +Gop

As discussed beforehand, there is a minority carrier lifetime, τn associated with recom-
bination. The recombination rate, Rn is proportional to the number of electrons available
for recombination, and is thus, given by:

Rn = n
τn

= no

τn
+ ∆n

τn

Substituting this back into the equation gives us:

dn
dt

= 1
q
dJn(x)

dx
+ (Gth +Gop − no

τn
− ∆n

τn
)

At equilibrium, the net current is zero, there are no external fields or temperature
gradients, and no light is shining on the sample. For a sample at equilibrium, it then
means that ∆n = 0, Jn = 0, and Gop = 0. Thus the continuity equation leads us to a
simple and quite intuitive result:

Gth = no

τn

which means that for a semiconductor sample at equilibrium, the thermal rate of gener-
ation of carriers is exactly equal to the intrinsic rate of recombination of carriers. The
continuity equation (for electrons) can then be finally written as:
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dn
dt

= 1
q
dJn(x)

dx
+ (Gop − ∆n

τn
)

Similarly, for holes,

dp
dt

= −1
q

dJp(x)

dx
+ (Gop − ∆p

τp
)

Substituting the current equation into the continuity equation gives us:

dn
dt

= nµn
dE
dx

+ µnE
dn
dx

+Dn
d2n
dx2 + (Gop − ∆n

τn
)

dp
dt

= −pµp
dE
dx

− µpE
dp
dx

+Dp
d2p
dx2 + (Gop − ∆p

τp
)

Now, consider a semiconductor block, initially at equilibrium, which is now illumi-
nated uniformly. The continuity equation yields:

d(∆n)
dt

= Gop − ∆n
τn

⇒ ∆n(t) = Gopτn(1− e−t/τn)

Now if the light source is turned off at t = to, Gop = 0 and thus,

∆n(t) = ∆n(to)e
(−t/τn)

Let us now consider a semiconductor block at a steady state, with a non-zero current
density and G = 0. We also assume that external electric field, E = 0. Then,

d(∆n)
dt

= 1
q
dJn(x)

dx
− ∆n

τn

At steady state, d(∆n)
dt

= 0, which gives us,

1
q
dJn(x)

dx
= ∆n

τn

⇒ d2∆n
dx2 = ∆n

L2
n

where Ln =
√
Dnτn is known as the diffusion length of the carrier inside the material.

The general solution to this differential equation is of the form-

∆n(x) = c1e
x

Ln + c2e
− x

Ln ,
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where the coefficients c1 and c2 will be determined as per the boundary conditions appli-
cable to the situation. The equation can be further simplified for practical use if we take
into consideration the fact that there are, generally, two possible cases- one where the
diode length is much larger than the depletion length(long diode) and the other where
the diode length is much shorter than the depletion length(short diode).

In a short diode, the exponential terms can be simplified to their linear approximations
(ex = 1 + x, for x << 1) since x/Ln << 1. So the excess carrier concentration in this
case falls off linearly. In a long diode, the coefficient of the term e

x
Ln must be zero since

it would otherwise imply that the excess carrier concentration increases indefinitely on
moving away from the origin, which is not possible theoretically. Hence, the excess carrier
concentration falls off exponentially in this case.

The continuity equation can be expressed in many formats as we have seen above.
Hence, it depends a lot on the situation as to what form of the equation should be used
for our purpose.

3 P-N Junctions

p-n junctions are elementary constituents of many modern electronic devices such as
diodes, solar cells, rectifiers, ICs, transistors, etc. This section will cover the part of p-n
homojunctions only. The term homojunction means that the junction is between two
regions of the same material. On the other hand, in a heterojunction, the junction is
between regions of two different materials (e.g. Si and Ge).
There are several methods of fabricating a p-n junction, among which the most common
method involves implanting donor atoms into a p-type Si substrate. With the appropriate
doping levels, it inverts the p-type substrate into n-type Si, which is now in metallurgical
contact with p-type Si.

p-n junction diode and its symbol

Some of the assumptions that we will be taking while dealing with p-n junctions
are as follows: (i) The material is light/moderately doped, (ii) Complete ionisation of
dopant atoms, (iii) All calculations are made at ideal operating conditions, i.e. at room
temperature.
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3.1 p-n junction at equilibrium

Due to the concentration gradient across the junction, a diffusion current starts flowing
across it. However, at the junction itself, electrons and holes capture each other and
thus, recombine, resulting in the release of energy. This process of recombination depletes
the region adjacent to the junction of electrons and holes, leaving behind an excess of
immobile dopant atoms therefore, it is also known as the depletion region. These immobile
atoms now create an in-built potential across the junction which is opposite to the flow of
the diffusion current. This in-built potential steadily grows with time until the diffusion
current can no longer flow across the junction. Hence, even without any application of
external potential, there exists an in-built potential, say Vbi across the p-n junction.

When a p-n junction is under equilibrium, the Fermi level on both p- and n-side is
invariant with position. This is a consequence of the fact that rates of generation and
recombination exactly balance each other at equilibrium and can be proved in general.
The C.B.s and V.B.s of the two sides merge with each other in a continuous fashion,
keeping band-gap energy constant throughout, as shown in the figure below:

Energy band diagram of a p-n junction

Let the width of the depletion region be W = Wn +Wp where Wn and Wp represent
the widths of the depletion region on n- and p-sides respectively. Let ϕn and ϕp represent
the energy gap between Ec and EF on n-side and Ev; and EF on p-side respectively. We
know that,

ϕn = kBT ln(
Nc

ND
)
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ϕp = kBT ln(
Nv

NA
)

From observation, one can reach the conclusion that:

qVbi = EG − ϕn − ϕp

qVbi = EG − kBT ln(
NcNv

NAND
) = EG − kBT ln(

NcNv

np
)

Now,

n2
i = NcNvexp(− EG

kBT
)

Substituting this in the previous equation and eliminating EG,

Vbi =
kBT
q
ln(NAND

n2
i

)

which gives us an estimate for the built-in potential in terms of dopant concentrations.
We can also derive a relation between Vbi and the width of the depletion region using
Poisson’s equation.

Since the sample must remain electrically neutral throughout the process, net charge
must be zero within the depletion region. This implies that NAWp = NDWn. This also
means that the higher the doping on a given side, the lower the depletion width on that
side. Now, applying Poisson’s equation to the n-side,

d2V
dx2 = − ρ

ϵoϵr

This implies:

dE
dx

= qND

ϵoϵr

On integrating with the appropriate limits,

E = qND

ϵoϵr
(x−Wn), for 0 < x ≤ Wn

Similarly,

E = − qNA

ϵoϵr
(x+Wp), for −Wp ≤ x < 0
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Now, having found the electric field in the depletion region, we are in a position to
determine the built-in potential difference across the junction.

Vbi = −(
∫ 0

−Wp
E dx+

∫Wn

0
E dx)

On solving this particular integral, we obtain,

Vbi =
q

2ϵoϵr
(NAW

2
p +NDW

2
n)

which on further simplification, yields:

W =
√

2ϵoϵr
q

Vbi(N
−1
A +N−1

D )

where W represents the width of the depletion region.

3.2 Quasi-Fermi levels

Before we move into the analysis of p-n junctions under bias, we need to understand
the concept of quasi-Fermi levels. Quasi-Fermi levels are used to calculate the carrier
concentrations in a semiconductor sample when it is under a state of quasi-equilibrium.

The Fermi level in a semiconductor can estimate the carrier concentrations at thermal
equilibrium. As we know, this state of thermal equilibrium is fairly dynamic in nature-
though the carrier population remains constant over time, an individual carrier simply
doesn’t remain at rest in a particular energy band. Due to thermal generation of EHPs,
some electrons are excited into the conduction band from the valence band. At the same
time, an equal number of holes from C.B. recombine with electrons from V.B., keeping
carrier populations constant over time. After an electron has been excited into a higher
energy level, it undergoes rapid transitions (phonon interactions) to reach the lowest
energy level in C.B. Similarly, a hole in lower regions of V.B. undergoes rapid transitions
to reach the top of V.B. (Since the energy bands are w.r.t electrons, hole energy goes the
other way round). These intra-band transitions take about 10−12 to 10−13 seconds. In
contrast, the inter-band transitions take about 10−8 to 10−9 seconds. Such a wide range
of differences in the transition times is what makes possible a quasi-equilibrium state in
the semiconductor.

The need for the introduction of quasi-Fermi levels is clearly understood through a
physical analogy of a water tank and pump.

Let us say that the energy level, Ec and Ev can be represented by two tanks of
water where the water level in each represents the electronic concentration. The thermal
generation process can be thought of as a thermal pump operating between the two tanks
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and pumping water from the lower tank (Ev) to the upper tank (Ec) at a given rate for
a particular temperature. The recombination process can be visualised as a leaky upper
tank so that some of the water pumped into the upper tank leaks into the lower tank,
thereby decreasing the water level of the upper tank. At T = 0K, the thermal pump
doesn’t operate, so there’s no change in water level (electrons) in either of the tanks
(the upper tank is empty as of now). At a finite temperature, the thermal pump starts
operating and pumping water into the upper tank. Some of the water leaks out into the
lower tank due to the holes in the upper tank and thus, they help establish an equilibrium
water level in both tanks.

Now, suppose that due to external factors, there is an additional pump operating
between the two tanks. Now, at the same temperature, the equilibrium water level would
be different in both tanks. The water level in the lower tank falls while that in the
upper tank rises. This is analogous to electrons being pumped into the C.B. by external
factors, which is the same situation as in a p-n junction under bias. Thus, it can be
inferred that the equilibrium Fermi level can no longer account for this new population
since the temperature remains unchanged throughout the process. This is where the
quasi-Fermi levels are taken into consideration.

Instead of a single Fermi level, we now define two different quasi-Fermi levels such
that,

n = Ncexp(
EFn−Ec

kBT
)

p = Nvexp(
Ev−EFp

kBT
)

Consequently,

np = n2
i exp(

EFn−EFp

kBT
)

Hence, the value of EFn−EFp determines how much the deviation is from the equilib-
rium position in the semiconductor crystal. At thermal equilibrium, the two quasi-Fermi
levels merge together to form a single Fermi level.

3.3 p-n junction under bias

Suppose that we apply an external voltage, Va, across the p-n junction. The device itself
consists of three regions:
(i) The quasi-neutral region on the n-side,
(ii) The depletion region,
(iii) The quasi-neutral region on the p-side
The resistivity is inversely proportional to the number of free carriers in a semiconductor-
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this implies that nearly all the applied bias voltage drops across the depletion region
(which has virtually no free carriers since they have been swept away). In general, the
junction voltage, Vj will be given by-

Vj = Vbi − Va

3.3.1 Forward bias

Let us first consider the case of a p-n junction diode under forward bias. In a forward-
biased p-n junction diode, the majority carriers from one side are pumped to the other
side due to the applied voltage. For example, electrons from the n-side are pumped to
the p-side, becoming the minority carriers. Now, these minority carriers on each side
recombine with majority carriers and start to decay, creating a concentration gradient in
the respective regions they occupy. This concentration gradient starts a diffusion current,
which can be attributed to minority carriers. In order to estimate this diffusion current,
first, we need to evaluate the concentration profile. And in order to do so, we need to use
the concept of quasi-Fermi levels and how these quasi-levels behave under the application
of an external bias.

Under forward bias, the quasi-Fermi levels inside the diode are separated by a gap of
qVa, where Va is the applied bias voltage. Away from the junction, this energy difference
gradually reduces and eventually merges to a single quasi-Fermi level on both sides, i.e.
at a large enough distance from the junction, the carrier concentrations are restored to
their equilibrium concentrations. This is depicted in the energy band diagram shown
below:

Quasi-Fermi levels in a p-n junction diode under forward bias

Let the dopant concentration on n-side be ND and the equilibrium minority carrier
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concentration be given by pn0 , where pn0 = n2
i /ND . Let pn(x) represent the minority

carrier distribution function. Then, pn(Wn) is given by-

pn(Wn) = Nvexp(
Evn−Fp

kBT
)

pn(Wn) = Nvexp(
Evn−EFn

kBT
)exp( qVa

kBT
)

Therefore,

pn(Wn) = pn0exp(
qVa

kBT
)

Hence, excess minority carrier concentration at the left-hand boundary of the n-side
is given by-

∆pn = pn0(exp(
qVa

kBT
)− 1)

We now have two boundary conditions for the excess minority carrier concentration on
the n-side - at a large distance from the junction, ∆pn = 0 and at the junction boundary,
∆pn = pn0(exp(

qVa

kBT
)− 1). From the continuity equation(for a long diode), we can obtain

the excess minority carrier concentration profile as follows-

∆pn(x) =
n2
i

ND
(exp( qVa

kBT
− 1))exp(−x−Wn

Lp
)

Similarly, for the p-side,

∆np(x) =
n2
i

NA
(exp( qVa

kBT
− 1))exp(x+Wp

Ln
)

The diffusion currents can now be determined directly as:

Jn(x) = qDn
d∆n(x)

dx
= −qDn

Ln
(exp( qVa

kBT
− 1))exp(x+Wp

Ln
)

Jp(x) = −qDp
d∆p(x)

dx
= −qDp

Lp
(exp( qVa

kBT
− 1))exp(−x−Wn

Lp
)

However, an important point has been overlooked during the calculations- the net
current is not constant with position, since we have not taken drift current into con-
sideration. Ideally, due to the high resistance of the depletion region(since its carrier
concentration is very low), it is assumed that all of the forward bias voltage drops across
it. However, due to the finite, but small, resistance of the quasi-neutral regions, there is
a small electric field in this region. Coupled with a high majority carrier concentration,
this small electric field can create a drift current equivalent in magnitude to the diffusion
currents of minority carriers. Therefore, the current density profile is as shown below:
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Current density profile

At the junction boundary(x = W−
n and x = −W+

p ), the electric field is practically
zero as well as the majority carrier concentration is very low. Hence, the drift current
magnitude is zero at the junction boundaries. The net current, therefore, is given by the
sum of the magnitudes of the two diffusion currents at the respective junction boundaries.

Jnet = qDp

Lp
pn0(exp(

qVa

kBT
)− 1) + qDn

Ln
np0(exp(

qVa

kBT
)− 1)

Jnet = J0(exp(
qVa

kBT
)− 1),

where J0 = qDp

Lp
pn0 + qDn

Ln
np0 and is known as the ’reverse saturation current’. At room

temperature of 300K, kBT is approximately only 26 meV while qVa is typically much
larger than this. So effectively, the current equation becomes an exponential relation
between the current and applied forward voltage bias.

3.3.2 Reverse bias

Mathematically, the situation in reverse bias is similar to forward bias- in the current
equation, we can replace Va by −Va in order to evaluate the reverse bias current. Phys-
ically, what happens under reverse bias is that the minority carrier injection drastically
falls due to the large potential difference existing between the two sides. In fact, we can
say that minority carriers are ’extracted ’ instead of being ’injected ’ across the p-n junc-
tion. This large decrease in minority carrier profile results in exponentially lower diffusion
currents and, consequently, very low net current. Hence, a p-n junction practically blocks
any current under reverse bias. Due to this unique property, a p-n junction is used as a
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’rectifier’ in circuits. For Va ¡ -3kBT , to good approximation the diode reverse current is
-Jo.

Due to the high electric field inside the depletion region under reverse bias situation,
several interesting phenomena occur on the application of high reverse voltages, notable
among them being the Zener breakdown and the avalanche breakdown. Due to these
breakdown phenomena, after a certain voltage limit(known as the breakdown voltage),
the current in the diode increases tremendously, even on a minuscule change in the voltage,
as illustrated by the I-V characteristics.

Zener breakdown occurs when the high electric field inside the depletion zone enables
quantum tunnelling of electrons across the depletion region, which leads to a large increase
in charge carriers. Avalanche breakdown, as the name suggests, proceeds like a chain
reaction. A high-energy carrier can collide with an atom in the depletion zone and, thus,
generate an extra carrier contributing to the current flow. This newly generated carrier
can further collide with atoms, releasing more carriers. Thus, the process becomes a
chain reaction(like an avalanche), leading to a large current increase.

3.4 Short-Base Diodes

In the above discussion, we assumed that the diode length was significantly larger than
the diffusion lengths of the charge carriers. If this is not so, and the diode length is
comparable or, in some cases, much smaller than the diffusion lengths, the diode is said
to be a short-base diode. In this section, we derive the current equation for the short-base
diode.

Let us assume that the length of the n-side is WB, and that of the p-side is WA (both
are much smaller than Ln and Lp, respectively). The excess minority carrier concentra-
tions at the edge of the band are given by:

∆p(Wn) = pno(exp(
qVa

kBT
)− 1)

∆n(−Wp) = npo(exp(
qVa

kBT
)− 1)

The minority carrier concentration as a function of position inside the quasi-neutral
regions will be given by:

∆n(x) = c1 + c2
x
Ln

∆p(x) = c
′
1 + c

′
2

x
Lp

where c1, c
′
1, c2 and c

′
2 are some constants. On applying the appropriate boundary

conditions along with the expression for diffusion current, we obtain the following:
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Jn(x) = q Dn

WA
npo(exp(

qVa

kBT
)− 1)

Jp(x) = q Dp

WB
pno(exp(

qVa

kBT
)− 1)

Observe that while the exponential relation of voltage with current stays the same, the
value of the reverse saturation current, Jo, has changed.

3.5 Generation and Recombination Currents

While analysing the p-n junction diode, we assumed that generation-recombination pro-
cesses take place only in the quasi-neutral regions of the diode, and we ignored such
processes in the depletion region. However, carrier generation-recombination does occur
in the depletion region and constitutes the generation-recombination (G-R) current. In
fact, it turns out that the G-R current is much larger than the reverse saturation current
in a reverse-biased diode (G-R current is typically three orders larger than the reverse
saturation current). The net recombination rate (under certain assumptions) inside the
semiconductor is given by-

R−G =
np−n2

i

τo(n+p+2ni)

At equilibrium, np = n2
i , and therefore, the net recombination rate is zero everywhere

inside the material. In a non-equilibrium steady state situation, np need not be equal to
n2
i ; therefore, there is either net recombination or generation inside the material.

3.5.1 Generation-Recombination in reverse bias

In reverse bias, the recombination rate is very nearly zero since most of the minority
carriers inside the depletion region have been ’extracted’ out. Thus, n ≈ p ≈ 0 and thus,

R = 0, G = ni

2τo

JG = −qGW = − qniW
2τo

3.5.2 Generation-recombination in forward bias

In forward bias, within the transition region,

np = n2
i exp(

qVa

kBT
)
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Due to this reasonably high product value, np, we can argue that recombination processes
dominate in the depletion region. Hence,

G = 0, R =
n2
i exp(

qVa
kBT

)

τo(n+p)

The G-R current density is approximately given by:

JGR = JGR0(exp(
qVa

2kBT
)− 1)

The total current density is then given by:

J = JGR + Jdiff = JGR0(exp(
qVa

2kBT
)− 1) + Jo(exp(

qVa

kBT
)− 1)

I-V characteristics after taking G-R current into consideration

At small Va, recombination current dominates since JGR0 >> Jo. At higher values of
Va, the diffusion current predominates. At still higher values of Va, the line deviates
from linearity because of the IR drop inside the semiconductor (which was negligible at
low-to-moderate voltages). In general, the diode current is expressed as-

J = Js(exp(
qVa

nkBT
)− 1)

where Js is a function of JGR0 and Jo, and the ideality factor, n, depends upon the applied
bias voltage (1 < n < 2).
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3.6 Carrier Multiplication and Tunnelling

3.7 Diode Capacitance

The p-n junction diode capacitance can be divided into two distinct parts- the small-signal
capacitance, known as junction(differential) capacitance and the large-signal capacitance,
known as stored-charge capacitance.

3.7.1 Junction Capacitance

Let us bear the obvious fact in mind that the width of the depletion region, and by
extension, the charge due to immobile carriers bound within the depletion region, depends
on the magnitude of the biasing voltage across the diode. Let us consider a small ac signal
riding on a larger bias voltage applied across the p-n junction. For a small change dVa

in applied voltage, the space charge on one side of the junction changes by +dQ and on
the other side by -dQ. Observe that this dQ charge appears as a sheet of charge across
the depletion region, and therefore, the capacitance is given by:

Cj = | dQ
dVa

| = ϵA
W

This capacitance is often called the depletion capacitance.

3.7.2 Stored Charge Capacitance

The stored charge capacitance is attributable to the change in minority carrier density
on either side of the junction, as minority carriers are either injected or extracted at the
junction edges, with changing bias.

Consider a p-n junction under forward bias. In the steady state, the minority carrier
concentration on the p-side is given by:

∆np(x) = ∆np(xp)e
−(x−xp)

Ln

This distribution is maintained at the steady state, even though the individual electrons
and holes undergo dynamic changes. The net ”stored charge” due to excess minority
carriers in the p-region is given by-

Qs = −qA
∫∞
xp

∆np(xp)e
−(x−xp)

Ln dx = qA∆np(xp)Ln
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Note that on varying the bias voltage, this distribution does not change instantaneously.
Instead, the sheet charge at x = xp is dragged down while the distribution inside the bulk
of the semiconductor

4 Metal-Semiconductor Junctions

Metal contacts are a quintessential part of semiconductor devices-most of the final pack-
aged products in the industry involve numerous metal-semiconductor junctions. Apart
from this, many measurement devices, cables, etc., involve metal contacts. So, it is im-
portant to understand the characteristics of metal-semiconductor junctions in order to
understand real-life semiconductor devices.

The two types of metal-semiconductor junctions are the ’Schottky contacts’ and the
’Ohmic contacts’. As the name suggests, ohmic contacts obey Ohm’s law, while the
Schottky contact’s I-V characteristics resemble that of a p-n junction. That whether a
given metal contact behaves as a Schottky contact or an ohmic one largely depends on
the work function of the metal for a given semiconductor sample.

4.1 Schottky contacts

Let us assume that the semiconductor sample under consideration is n-type doped, and
its Fermi level is above the Fermi level of the metal. When the metal and semiconductor
sample are brought into mutual contact, electrons start to flow from the n-type material
into the metal in a bid to equalize the two distinct Fermi levels at equilibrium. At equilib-
rium, the gap between Ec and EF as well as that between Ev and EF is non-uniform in the
depletion region but tapers down to the initial value inside the bulk of the semiconductor.
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Schottky contact energy band diagram

Let the Schottky contact be characterised by built-in potential Vbi, depletion width
Wd, and Schottky barrier ΦB. Let the work functions of the metal and semiconductor be
ϕm and ϕs, respectively. Observe that,

qVbi = ϕm − ϕs

Proceeding in a similar manner as in the case of p-n junctions, we can show that inside
the semiconductor, Poisson’s equation follows as

d2V (x)
dx2 = − qND

ϵoϵs

Which on further simplification along with the boundary condition E(W+
d ) = 0 yields,

dE(x)
dx

= qND

ϵoϵs

E(x) = qND

ϵoϵs
(x−Wd)

This yields the built-in potential as:

Vbi =
qNDW 2

d

2ϵoϵs

This expression for the built-in potential is in many ways functionally similar to the one
derived for the p-n junction diode. The difference between conduction band and Fermi
band inside the bulk of the semiconductor is given by-

Ec − EF = kBT
q
ln( Nc

ND
)

The Schottky barrier, ϕB, preventing the injection of electrons from metal to the semi-
conductor is given by-

ϕB = qVbi + (Ec − EF )

ϕB =
q2NDW 2

d

2ϵs
+ kBT

q
ln( Nc

ND
)
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The Schottky contact’s current equation is of the same functional form as the p-n junction
diode. Therefore the Schottky contact acts as a rectifying contact like the p-n diode. In
fact, in high-frequency applications the Schottky contact is preferred over the p-n junc-
tion diode.

Schottky contacts under bias

The forward current equation in a Schottky contact is given by-

J = BT 2exp(− qϕB

kBT
)exp( qV

ηkBT
)

where the constant B depends upon junction parameters and 1 < η < 2. This equation
is functionally similar to the current due to thermionic emission.

4.2 Ohmic contacts

When the Fermi level of the n-type material is below the metal Fermi level, it results in
an inflow of electrons from the metal to the semiconductor, resulting in an accumulation
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of electrons near the junction. This can also be understood in terms of energy bands as
shown through the figure below:

Ohmic contact

The junction behaves as an ’Ohmic’ contact because of the characteristic metal-like
property associated with it - the Fermi level lying above the conduction band near the
junction.

The cases considered till now were those of n-type semiconductors. For p-type ma-
terials, the cases are reversed - when the semiconductor Fermi level lies below the metal
Fermi level, it forms a Schottky contact, and when it’s above the metal Fermi level, it
forms an Ohmic contact. These facts can be easily verified by drawing the relevant energy
band diagrams.

5 Metal-Oxide-Semiconductor Field-Effect Transis-

tors(MOSFETs)

MOSFETs and related transistors are by far the most extensively used semiconductor
devices in the modern age, because of their uses in logic and memory devices. Although
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MOSFETs were introduced much later, they eventually overtook BJTs in their applica-
tions, primarily due to their very low power consumption. Microprocessors and memory
chips include billions of MOSFETs and the number of MOSFETs included in these elec-
tronic devices is expected to double every two years, as per the well-known Moore’s Law.

Initially, the gate material in MOSFETs was a metal (aluminium, to be specific).
Present-day transistors, however, use degeneratively doped polycrystalline Si (poly-Si),
which is highly conductive, as the gate material. Silicon dioxide has been historically
used to create the oxide layer.

5.1 MOS Capacitor(MOSC)

An nMOS capacitor basically consists of a n+-Si layer (the gate material) separated by
a thin oxide layer (insulating) from the p-type substrate.

5.2 MOS Capacitor

MOS Capacitor

The MOS capacitor essentially consists of a metal gate in contact with an insula-
tor/oxide medium, which further is in contact with a p- or n-type substrate as shown
in the above figure. The insulator ensures that no current flows between the metal and
semiconductor.

There are some basic assumptions that we shall put into use while analyzing MOS
capacitors (later on, we will address them). One assumption is that there is no energy
difference between the metal and semiconductor Fermi levels even before joining them,
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i.e. flat band condition exists. The other assumption is that there are no free charges
present in the bulk of insulator or the semiconductor. Under such assumptions, the en-
ergy band diagrams of the MOS capacitor are as follows:

Energy band diagram of a n-type MOS capacitor
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Energy band diagram of a p-type MOS capacitor

When a gate voltage, VGS is applied, there are three possibilities that may arise-
accumulation, depletion or inversion. All these modes have their unique properties and
associated capacitances, which have to be analyzed separately. Let us consider a p-type
substrate for the associated analysis. All the results derived as such will also hold for a
n-type substrate.

5.2.1 Accumulation mode

On applying a negative gate voltage, holes are drawn from the substrate to the insulator-
substrate junction and consequently, a negative charge density is also induced on the
metal. This process results inn band-bending of the energy levels near the junction as
shown:
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Energy band diagram at accumulation mode

Since holes (majority carriers) are accumulated near the junction, this is known as
the ’accumulation’ mode of operation. The gate voltage is given by-

VGS = ϕs + Vox

Generally, ϕs is negligible for moderate gate voltages as compared to Vox, so we can
simplify the expression further-

VGS ≈ Vox

In MOS capacitor theory, unlike the electrostatic theory, we always use the substrate
charge inside the semiconductor while calculating capacitances. Therefore, Vox is given
by-

Vox = −Qsub/Cox

this implies,

Qsub = Qacc = −CoxVGS

5.2.2 Depletion mode

When a positive gate voltage is applied across the capacitor, the energy bands reverse
their bending. The carrier population is now in quite a precarious situation- neither the
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hole nor the electron concentration is considerable enough to contribute to any potential
difference. The holes that have been pushed away from the insulator-substrate junction
leave behind a depletion region, consisting of immobile acceptor atoms, similar to the
depletion region of a p-n junction diode. Hence, this mode of operation is known as the
’depletion mode’.

Energy band diagram at depletion mode

Qsub is now effectively equal to Qdep, i.e. the charge enclosed within the depletion
region formed. Qdep is given by-

Qdep = −qNAWd,

where Wd is the depletion width. Now, Vox is given by-

Vox = −Qsub

Cox
= qNAWd

Cox

The relation between ϕs and Wd is the same as in the case of the p-n junction diode(since
the relation is a purely electrostatic one, it holds whenever there’s no current density
present). Therefore,

ϕs =
qNAW 2

d

2ϵs
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The final expression for VGS is-

VGS =
qNAW 2

d

2ϵs
+ qNAWd

Cox

One of the most important stages of the depletion mode of operation is the threshold
condition. The threshold condition represents a transition stage between the depletion
and inversion modes of operation. Under this condition, the intrinsic energy level is as
much below the Fermi level as it is above it. let qϕB represent the gap between intrinsic
and Fermi energy levels in the bulk of the semiconductor. Then, ϕB is given by-

ϕB = kBT
q
ln(NA

ni
)

ϕs at threshold is thus given by 2ϕB. The gate voltage is given by,

VGS = 2ϕB +
√
2qNAϵs
Cox

√
2ϕB

This particular value of gate voltage is a fundamental quantity for a MOS capacitor (and
for that matter, a MOSFET too) and is known as the threshold voltage, VT .

5.2.3 Inversion mode

The inversion mode of operation is when VGS > VT . Beyond this point, further increase
in gate voltage leads to significant accumulation of electrons at the insulator-substrate
junction. Thus, the substrate nearabout the junction is effectively ’inverted’ from a p-
type material to a n-type material. It is important to realize that this sheet of electrons
shield off much of the electric field and therefore, any further increase in gate voltage
does not affect the depletion region a lot. Rather, the excess of gate voltage from the
threshold voltage only increases the inversion charge density.

44



Energy band diagram at inversion mode

The expression for VGS is now given by-

VGS = 2ϕB − Qdep

Cox
− QIN

Cox

VGS = VT − QIN

Cox

That is,

QIN = −Cox(VGS − VT )

In theory, it is good enough to assume that the electrons in the inversion region are read-
ily supplied by the p-type substrate. Practically, however, due to low minority carrier
concentration, it can be upto several minutes before the electrons are generated ther-
mally to be supplied. The MOSFET overcomes this problem by having n+-type material
attached to the p-type substrate to provide the electrons readily.

Although we have ignored the presence of inversion charges in the neighbourhood of
threshold voltage, it is not entirely correct to do so. It is quite true that the effects of
the inversion charge density are significant only after the threshold voltage. However, it
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is also true that the inversion charge density should also be present at voltages below
the threshold voltage (albeit of very low magnitude). This free charge is responsible
for subthreshold conduction in the MOSFET. It is essential to consider the subthreshold
mode of operation in very low-power applications, where we want the turn-on time of the
electronic device to be very fast. The subthreshold mode of operation is what controls
this time.

5.3 Flat-band condition and flat-band voltage

Until now, we have assumed that the Fermi levels of the metal and semiconductor are
inherently equal. However, this assumption is not true practically. When the Fermi levels
of the metal and substrate are not equal, on joining them, we get a built-in potential across
the oxide layer because of the band-bending that occurs when the semiconductor Fermi
level tries to align itself with the metal Fermi level.

In order to restore the bands to equilibrium, we need to apply a gate voltage equal
to the Fermi-level energy difference, ϕms (i.e. ϕm − ϕs)-. So, our previous equations
have to be modified accordingly to take this factor into account. Since the effective gate
voltage reduces by ϕms due to band-bending, we can simply replace gate voltage VGS by
VGS − VFB, where VFB is known as the flat-band voltage and VFB = ϕms.

5.4 MOS C-V characteristics

The MOS C-V characteristics are measured w.r.t to a small-signal AC source, which is
superimposed on a much larger DC bias voltage. The capacitance is thus, defined as-

C = dQGS

dVGS
= −dQsub

dVGS

Setup for the C-V measurement
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(a) Accumulation mode

In accumulation mode, the substrate charge is given by-

Qacc = −Cox(VG − VFB)

Going by the formula then, we have,

C = Cox = ϵox
tox

Note that the capacitance under consideration is capacitance per unit area.

(b) Depletion mode

In depletion mode, the substrate charge is given by-

Qsub = −qNAWd

The gate voltage is given by-

VGS = VFB +
qNAW 2

d

2ϵs
+ qNAWd

Cox

Thus, we obtain-

1
C
= 1

Cox
+ Wd

ϵs
= 1

Cox
+ 1

Cdep

A bit of algebraic manipulation yields-

1
C
=

√
1

C2
ox

+ 2(VGS−VFB)
qϵsNA

(c) Inversion mode

In inversion mode, as we have seen earlier, the inversion charge is slow to change in
a MOS capacitor. So, it is only under the influence of a low-frequency signal that the
inversion charge layer can oscillate with time. In such a case, the capacitance of the
system will be equal to the oxide capacitance (since QIN = −Cox(VGS − VT )). At high-
frequency, the inversion charge remains constant whereas the charge inside the depletion
region oscillates instead. In this case, the capacitance is given by-

C = −dQdep

dVGS
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The capacitance in this case is the same as the depletion-mode capacitance at VGS = VT

(since we know that the depletion width is constant beyond VT ).

The following graph sums up the MOS C-V characteristics in different modes of
operation:

Ideal MOS C-V characteristics

The graph obviously depicts an ideal MOS capacitor. Practically, the graph is more
complicated since many more factors have to be taken into account.
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Experimental MOS C-V characteristics

Here is a highly instructive gif from Wikipedia depicting experimental variation of
MOS capacitor with gate voltage against varying oxide thickness.

5.5 MOSFET transistor

According to the definition, a transistor is a semiconductor device capable of amplifying
or switching electrical signals and power. In this light, the MOS capacitor clearly provides
us an opportunity to create a transistor since we can turn on or off a current (which is
attributable to the inversion charge), by simply modulating the gate voltage, VGS.

Layout of a MOSFET
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MOSFET structure

Some of the basic differences between a MOS capacitor and a MOSFET are that
while the MOS capacitor has no external source of minority carriers, the MOSFET has
’source’ and ’drain’ n+ regions, which readily supply electrons. Thus, the MOSFET
operates much faster in the inversion mode as compared to the MOS capacitor. Another
important difference is the presence of an additional voltage source VSB, which allows us
to change the source-bulk voltage independent of the drain voltage or the gate voltage.
This extra source is used to modulate the width of the depletion region and hence, the
threshold voltage VT .

The MOSFET I-V characteristics are derived by the Gradual Channel Approximation
(GCA). The GCA states that as compared to the voltage variation along the y-axis (the
direction perpendicular to the gate in the shown figure), the voltage variation along the
x-axis (the direction from the sourcse to the gate) is quite slower. The inversion charge
density acts like a sheet of charge along the x-axis and is also known as ’channel’. In a
MOSFET, what happens physically is that on application of a drain voltage, VDS (while
keeping VGS > VT ), the electrons in the channel move from the source to the drain by drift
processes (since the voltage changes very slowly along the channel, it also implies that the
electron density also changes very slowly - hence the diffusion component can be ignored).
The problem of current conduction through the channel can be broken up into two parts
- an electrostatic one where inversion and depletion charges are accumulated along the x-
direction and a dynamic one where VDS facilitates transport of electrons through channel.

The inversion charge distribution in the channel is such that the surface charge (w.r.t
the oxide capacitance) can be expressed as QIN(x) = n(x)∆y, where the volume charge
density behaves as a kind of Dirac delta function. In the light of this argument, consider
an elemental strip along the y-axis as shown in the above figure. The resistance of the ,
dR, is given by-
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dR = − dx
µnQIN (x)W

where W is the width of the channel, as shown in the structure of the MOSFET and µn

is the mobility of electrons. The total channel charge, QS(x) is given as QD(x)+QIN(x).
As per the voltage equations,

VGS = VFB − QS(x)
Cox

+ ϕs(x)

The term for ϕs now varies with position since there is an additional voltage drop in the
channel now from drain to source due to the presence of VDS which drives the current.
This implies,

ϕs(x) = 2ϕB + V (x)

Therefore,

QD(x) = −
√
2ϵsqNA(2ϕB + V (x))

Applying Ohm’s Law to the differential strip under consideration,

dV = IDdR

IDdx = −QIN(x)µnWdV (x)

On integrating,

ID = µnCoxW
L

([VGS − VT − VDS

2
]VDS − 2

3

√
2ϵsqNA

Cox
[(2ϕB + VDS)

3/2 − (2ϕB)
3/2])

The term
√
2ϵsqNA

Cox
is very small as compared to the other values and can practically

be ignored without much loss of accuracy. The I-V characteristic then comes down to-

ID = µnCoxW
L

([VGS − VT − VDS

2
]VDS)

When the drain voltage is much smaller than VGS − VT , the I-V relation becomes linear-

ID = µnCoxW
L

([VGS − VT ]VDS)

This represents the linear mode of operation of a transistor and the channel effectively
behaves as an ohmic resistor. At moderate values of VDS, we cannot neglect its value
in the I-V relation and have to use the exact relation itself. At still higher values of
drain voltages, we encounter the situation of what is known as the ’saturation’ region of
operation.
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5.5.1 Saturation mode

As the gate voltage increases, at one point of time, it exceeds VGS − VT . In such a case,
the inversion region in the vicinity of drain no longer exists and the channel is broken
at that point. This point is known as pinch-off mode of operation. At still higher drain
voltages, the channel ends at some point close to the drain, but is not extended all the
way to it as shown:

Pinch-off mode of operation

In saturation mode, the inversion region no longer exists after the pinch-off point.
Despite this, it does not prevent the carriers from conducting current in this region.
The conduction in this region happens through the depletion region surrounding the
conductive channel and drain and source regions. The resistance of this region is much
higher than the channel and is quite similar to that of silicon (since there are very few
carriers in the depletion region). Hence, most of the drain voltage drops across this
region as compared to the highly conductive channel. Now, the distance of the drain
from the pinch-off point is proportional to the drain voltage. So, the resistance offered by
this region is thus, proportional to the drain voltage - which implies that the saturation
current is independent of the drain voltage, as observed experimentally. The saturation
current is given by the value of drain current at the onset of saturation, i.e. when
VDS = VGS − VT .

ID,sat =
µnCoxW

2L
(VGS − VT )

2

At saturation mode, GCA no longer holds true. However, the basic equation governing
I-V characteristics remain unchanged and they can be solved in the same manner as we
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followed while deriving I-V characteristics for the MOSFET (for more clarity on this,
refer to Problem 3(f)).

The I-V characteristics of the MOSFET are summed up by this graph-

MOSFET I-V characteristics

6 Selected Problems

6.1 Problem 1

A p-type semiconductor sample with acceptor concentration NA, and length L, illustrated
below, has ohmic contacts at both its ends. A light source generates MA electron-hole
pairs/cm2-s in the plane at x = XA,i.e. gL(x) = MAδ(XA). Assume low-level injection
and quasi-neutrality everywhere in the bar.
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The general equation governing the excess minority carriers in a uniformly doped
material is

d2n
′
(x)

dx2 - n
′
(x)
L2
e

= − 1
De

gL(x)

(a) What boundary condition is imposed on the excess minority carriers n
′
at x = 0

and x = L ?

(b) We now make the assumption that the minority carrier lifetime is very long, which
simplifies the general equation to:

d2n
′
(x)

dx2 ≈ − 1
De

gL(x)

What quantitative restriction is placed on the minority carrier lifetime, τe, for this as-
sumption to be valid ?

(c) Using the long-lifetime approximation in part (b), determine two constraints(i.e.
boundary conditions) on the excess minority carriers at x = XA, i.e. relating n

′
(XA−) to

n
′
(XA+).

(d) Sketch the excess minority carrier concentration, n
′
(x) and the minority carrier

diffusion current, Je,diff (x) everywhere inside the semiconductor.

(e) A second light source is added illuminating a single spot along the semiconductor
at x = XB, where XB > XA, and generating electron-hole pairs at a rate MB, so that
gL(x) is now

gL(x) = MAδ(XA) + MBδ(XB)

Find n
′
(x) and Je,diff (x) under this new illumination condition.

[Courtesy : MIT OCW]

Solution
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6.2 Problem 2

Consider the silicon diode pictured below. It is 4µm long, with ohmic contacts at each
end, and it is uniform p-type with NA = 1 x 1017 cm−3 for 1 µm on its far left end and
uniform n-type with ND = 1 x 1017 cm−3 on its far right end. In between these two
uniformly doped regions, the net concentration, Nd(x) − Na(x), slowly grades linearly
over a distance of 2 µm from -1 x 1017 cm−3 on the left to 1 x 1017 cm−3 on the right, as
shown in the lower figure.

(a) In thermal equilibrium, what is the electrostatic potential, ϕ(x), in the left-hand
quasi-neutral region at x = -1.5 µm, and what is the electrostatic potential, ϕ(x), in the
right-hand quasi-neutral region at x = +1.5 µm, and what is the built-in potential step,
∆ϕb, seen transiting from x = -1.5 µm to x = +1.5 µm ?

(b) For the rest of this problem, a bias voltage, VAB, is applied to this diode resulting
in a total depletion region width of 1 µm, and xN =|xP | = 0.5 µm. Sketch and label the
net charge density, ρ(x) and the electric field, E(x), for -2µm < x < 2µm.

(c) What is the change in potential, ∆ϕ, transiting the depletion region when the bias
is the same as in Part b, i.e. what is ϕ(0.5 µm) – ϕ(-0.5 µm) ?

(d) What is the change in potential, ∆ϕ, in transiting the quasi-neutral n-type graded
region between x = 0.5 µm and x = 1.0 µm, i.e. what is ϕ(1.0 µm) – ϕ(0.5 µm) ?

(e) What is the applied bias voltage, VAB ?
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[Courtesy : MIT OCW]

Solution

6.3 Problem 3

The ID − VDS plot for an ideal n-channel MOSFET is shown below. The substrate bias,
VBS, is 0 V, the saturation current, IDsat, is 10 mA, and the saturation voltage, VDS,sat,is
5 V. For this device tox = 10 nm, ϵox = 3.5 x 10−13 F/cm, W = 50 µm, and L=10 µm.

(a) Given that VT = 1 V, what is the gate voltage VGS that must be applied to obtain
the characteristic shown above?

(b) What is the slope, dID
dVDS

of the characteristic at VDS = 0 V ? Make sure you provide
a formula as well as a value so that your answer is independent of the correctness of your
Part (a).

(c) Assuming that VT is independent of position in the channel, calculate the inversion
layer sheet charge density, q∗N(y) corresponding to Bias Point A (i) adjacent to the source
(the source end, y = 0) and (ii) adjacent to the drain (drain end, y = L).

(d) Calculate the electron drift velocity, se−Drift, at the (i) source end and (ii) drain
end of the channel at Bias Point A.

56

https://drive.google.com/file/d/19M9PUuE1QOvwd1e1w2vkUlPLHjnA2qOI/view?usp=sharing


(e) The transistor enters saturation at Bias Point B and simple theory suggests that
the drain-end charge has become 0 while the drain-end velocity is infinite, so that the
IDsat can flow in that part. Now, assuming instead that the electrons at the drain end
move at their saturation velocity, ssat = 107 cm/s, what is the channel charge density
that must exist there to support the IDsat ?

(f) Assuming VCS(y) is the voltage that a hypothetical voltmeter would measure
between the inversion layer at position y along the channel and the source. Derive an
expression that could be solved for VCS(L/2), i.e. at distance L/2 from the source in a
device biased at Bias Point C, in terms of the transistor parameters and IDsat.

[Courtesy : MIT OCW]

Solution

6.4 Problem 4

Consider the n+−p diode shown below in thermal equilibrium. The n+ doping in Region
1 is high enough that it is degenerate, with ϕn+ = 0.55 V. Assume that the depletion
region on the n+ side of the junction is negligibly small so that you may also assume
negligible change in potential across it. Note too that Region 2, the p− Si region, is very
lightly doped (i.e. NA2 < 1013 cm−3). Finally, L = 0.2 µm (= 2 x 10−5 cm). [ϕn+ refers
to the energy difference between intrinsic band and Fermi level in Region 1]

(a) Calculate ∆ϕ13, the built-in potential difference between the QNR (quasi-neutral
region) in Region 1 (i.e. where x << -L) and the QNR in Region 3 (where x >> 0).

(b) Sketch and label ρ(x), the net charge density, and E(x), the electric field, in the
structure. You should label the depletion region width in Region 3 as xD (you are not
expect to find a value for xD). You may assume that the width of the depletion region in
Region 1 is negligibly small (so that there is essentially an impulse of charge at x = -L).

(c) Set up an equation with xD, the width of the depletion layer in Region 3, being
the only unknown, that you could use to find xD.
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(d) Give an expression for C∗
dp, the depletion capacitance per unit area of this device

at zero bias, V = 0 volts. xD can appear as a parameter in your expression.

[Courtesy : MIT OCW]

Solution

6.5 Problem 5

Alice is a process engineer experimenting with a new high-permittivity dielectric material
with a dielectric constant, ϵhi, that is 5 times as large as the dielectric constant of SiO2,
i.e. ϵhi = ϵox. She chooses to test the material by fabricating p-MOS capacitors on n-type
silicon, and to use a metal for the gate and contact for which ϕm = - 0.5 ϕn. Her structure
is illustrated below; it also includes an adjacent p+ region shorted to the substrate (not
shown in the figure) to supply holes when an inversion layer is formed.

(a) Sketch the electrostatic potential, ϕ(x), through the device from G to B (i.e.
starting in the gate metal and going into the ohmic contact metal) in flatband when
VGB = VFB. Label all relevant features on your plot, including values for ϕ(0), depletion
region width, and potential drop across the oxide. Finally, derive an expression for the
flatband voltage, VFB.

(b) At flatband, i.e. with VGB = VFB, what are the electron and hole concentrations,
n(x = 0+) and p(x = 0+), at the silicon-dielectric interface?

(c) Sketch the electrostatic potential, ϕ(x), and the charge distribution, ρ(x), through
the device from G to B at the onset of inversion, i.e. when VGB = VT . Label all relevant
features on your plots, including values for ϕ(0), depletion region width, and potential
drop across the oxide. Finally, derive an expression for the threshold voltage, VT .

(d) At the onset of inversion, i.e., when VGB = VT ,what are the electron and hole
concentrations, n(x = 0+) and p(x = 0+), at the silicon-dielectric interface?

(e) A practical problem with depositing a dielectric other than SiO2 directly on sili-
con is that new energy states and/or fixed sheet charge are introduced at the interface.
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Imagine that the latter occurs, and that there is a fixed positive sheet charge density, σi,
at the interface. Assuming that this charge can be modeled as an impulse of charge of
intensity σi at x = 0, i.e. ρ(x) = σiδ(x), calculate the changes in the flatband voltage,
VFB, and in the threshold voltage, VT , resulting from the presence of this charge.

(f) To eliminate the interface charge, a very thin layer of silicon dioxide, SiO2, can
be grown on the silicon before the high permittivity dielectric is deposited, as illustrated
in the figure below. How much is the gate dielectric capacitance, CG, changed relative to
its original value in Part (a) by the addition this SiO2 layer if tox = 0.2thi?

[Courtesy : MIT OCW]

Solution

7 Formula Sheet

Keeping in view the difficulty in dealing with the large number of formulae involved in
this project, here is a formula sheet compiled by me to serve as a quick reference.
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