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“Nunc scio nihil.”

– perhaps some disillusioned Roman philosopher in his 20’s



Preface

Semiconductor-based devices have become the lifeblood of modern civilisation, powering

the tiniest microprocessor to the largest of the ICBMs. In our quest for smaller and still

smaller transistors, we have now hit a fundamental barrier beyond which deterministic

Newtonian mechanics is helpless and quantum mechanics reigns with all its glory of

probabilistic chaos. This calls immediately for a fundamental understanding of the

quantum mechanical nature of such beyond-Moore devices, viz., quantum devices. This

article is devoted to a brief exploration of such concepts, starting from simple toy models

of quantum condensed matter systems—reviewing the tight-binding ansatz, physics of

quantum bands, second quantization—and touching upon the state-of-the-art in modern

condensed matter—quantum topology and topological electronics.
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Chapter 1

Second Quantisation

Before we begin our incursion into the so-called ’second quantisation’, we need to appre-

ciate the reason why the need for second quantization arose. The properties of quantum

condensed matter systems and, by extension, that of real materials are controlled by

the collective behaviour of electrons in the presence of some background potential due

to an underlying crystal lattice. This statement, in fact, is a simpler rendition of the

Bohr-Oppenheimer approximation. So, what factors do we need to consider during the

analysis of a condensed matter system?

• Focus on electrons and their collective dynamics

• Electrons are free to move from one orbital to another (tunnelling/hopping)

• They are subject to a background potential from the lattice

• They can interact with each other due to Coulomb repulsion

The question remains, how do we formulate the Hamiltonian for many-body systems?

How do we encode anti-symmetry of fermions into this many-particle wavefunction?

And most importantly, how do we find out the eigenstates/eigenvalues of momentum

and/or energy of the system?

So, how do we encode fermionic anti-symmetry in many-particle wavefunctions?

Consider a single-particle quantum state ϕν(r⃗), where ν refers to labels for the quantum

state. The basis for a two-particle system is then given by

ψ(r⃗1, r⃗2) =
1√
2
[ϕν1(r⃗1)ϕν2(r⃗2)− ϕν1(r⃗2)ϕν2(r⃗1)]

1
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This basis satisfies the anti-symmetry property, and also, there happens to be a less ver-

bose manner through which we can express such wavefunctions - Slater’s determinants.

For a generalizedN -particle system such that the basis states are perfectly anti-symmetric

under exchanging the labels of any two particles, the wavefunction can be expressed as

ψ(r⃗1, r⃗2, ..., r⃗N ) =
1√
N !



ϕν1(r⃗1) ϕν2(r⃗1) ... ϕνN (r⃗1)

ϕν1(r⃗2) ϕν2(r⃗2) ... ϕνN (r⃗2)

. . .

. . .

. . .

ϕν1(r⃗N ) ϕν2(r⃗N ) ... ϕνN (r⃗N )


The ’first quantisation’ principle cannot be used to satisfactorily explain condensed

matter systems since calculations become cumbersome and expensive as the number of

particles in the system increases, and the representation requires the number of parti-

cles, N , to be fixed. As N approaches the limit associated with statistical physics, N is

allowed to fluctuate as per the grand canonical ensemble. Second quantisation or occu-

pation number formalism is the standard way in which many-particle QM is formulated.

It is based on the algebra of ladder operators.

• Second quantisation provides a compact way of representing the many-body space

of excitations.

• Properties of operators are now encoded in a single set of commutation/anti-

commutation relations rather than in some explicit Hilbert space representation.

In essence, second quantisation formalism offers us a significant computational advan-

tage and a more compact and efficient representation of the Hamiltonian when dealing

with many-particle quantum systems. For example, consider a symmetrised N -particle

wavefunction of fermions (ζ = −1) or bosons (ζ = +1) expressed in the form

|λ1, λ2, . . . λN ⟩ =
1√

N !
∏∞
λ=0 nλ!

∑
P
ζP |ψλP1

⟩ ⊗ |ψλP2
⟩ . . .⊗ |ψλPN

⟩ (1.1)

where nλ is the total number of particles in state λ (for fermions, Pauli exclusion principle

dictates that nλ = 0, 1, i.e. nλ! = 1). The summation runs over all N ! permutations of

the quantum numbers λi, and P denotes the parity 1.

1Parity is defined as the number of transpositions of two elements which brings the permutation
(P1,P2, . . .PN )) back to the ordered sequence (1,2,. . . N)
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Second quantisation formalism provides for a much more condensed and intuitive rep-

resentation for the generalised wavefunction via the vacuum state |Ω⟩, and a set of

creation (annihilation) field operators cλ (c†λ), as follows:

cλ |Ω⟩ = 0,
1√∏
λ nλ!

c†λN . . . c
†
λ1

|Ω⟩ = |λ1, λ2, . . . λN ⟩ (1.2)

In terms of physical interpretation, the operator c†λ creates a particle in state λ while

the operator cλ annihilates it. The commutation relations between these operators are

captured via Clifford algebra 2:

[cλ, c
†
µ]−ζ = δλ,µ, [cλ, cµ]−ζ = [c†λ, c

†
µ]−ζ = 0 (1.3)

The physical interpretation of 1.2 and the commutation relations of the field operators

is no trivial matter – these equations imply that for any N, the N -body wavefunction

can be generated by an application of a set of N -independent operators to a vacuum

state. Similarly, the formal definition of the general many-body or Fock space can

be given as the direct sum ⊕∞
N=0FN , where FN is defined as the linear span of all N -

particle states |λ1, λ2, . . . λN ⟩ = 1√∏
λ nλ!

c†λN . . . c
†
λ1

|Ω⟩. Intuitively, the Fock-subspaces

FN are generated by repeated action of creation operators on the vacuum space F0, and

application of creation/annihilation field operator on a wavefunction takes it from one

Fock-subspace to another.

Before proceeding further, we need to determine the basis transformation for the field

operators, and the Fourier transform of the operators from the real space to k-space

(otherwise known as the momentum space). These results will prove incredibly useful

while analysing the Hamiltonians for interacting fermionic systems.

2[Â, B̂]ζ = ÂB̂ − ζB̂Â is the commutator ζ = 1 (anticommutator ζ = −1) for bosons (fermions). As
per convention, the notation [.,.] denotes the commutator while {.,.} the anticommutator.
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1.0.1 Change of basis

The identity operator, I can be resolved as I =
∑∞

λ=0 |λ⟩ ⟨λ|. Using the relations∣∣∣λ̃〉 =
∑

λ |λ⟩
〈
λ|λ̃
∣∣∣λ|λ̃〉, |λ⟩ = a†λ |Ω⟩, and

∣∣∣λ̃〉 = a†
λ̃
|Ω⟩, the transformation law is given

by:

c†
λ̃
=
∑
λ

⟨λ|λ̃⟩c†λ, cλ̃ =
∑
λ

⟨λ̃|λ⟩cλ (1.4)

1.0.2 Fourier transform of field operators

The physical interpretation provided for the creation (annihilation) operators states that

they can be thought of as creating (annihilating) a particle in a state λ. In particular,

this can be thought of as creating (annihilating) a particle at a dimensional site r,

or equivalently, with a momentum k. This distinction is important since it is subtly

related to the Heisenberg Uncertainty Principle – the first scenario implies that the

position of the particle is known with a very high certainty, and therefore is delocalised

in momentum space and vice-versa. The transformation from real space to k-space and

vice-versa is captured via Fourier transform of the field operators.

ĉ(†)r =
1√
N

∑
k

e−(+)ikr ĉ
(†)
k , ĉ

(†)
k =

1√
N

∫
r
e−(+)ikr ĉ(†)r (1.5)

If we are dealing with discrete lattice sites, the Fourier transform has to be modified

accordingly

ĉ(†)r =
1√
N

∑
k

e−(+)ikarc
(†)
k (1.6)

and k lies inside the first Brillouin zone, i.e. k ∈
[
−π
a ,

π
a

]
and a is the lattice constant.

1.1 Representation of operators

Single particle or one-body operators Ô1 acting in a N -particle Hilbert space, FN ,

generally take the form Ô1 =
∑N

n=1 ôn, where ôn is an ordinary single-particle operator

acting on the n-th particle. A typical example is the kinetic energy operator T̂ =
∑

n
p̂2n
2m ,

where p̂n is the momentum operator acting on the n-th particle. Since we have seen

that, by applying field operators to the vacuum space, we can generate the Fock space in
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general and any N -particle Hilbert space in particular, it must be possible to represent

any operator Ô1 using the set of creation/annihilation operators. Here, we present the

formal representation of a one-body operator using second quantization principles,

Ô1 =
∑
λµν

⟨µ|λ⟩oλ⟨λ|ν⟩ĉ†µĉν =
∑
µν

⟨µ|ô|ν⟩ĉ†µĉν (1.7)

Formally, the one-body operator, Ô1, scatters a particle from a state ν into a state µ

with probability amplitude ⟨µ|ô|ν|µ|ô|ν⟩.

Two-body operators Ô2 are needed to describe pairwise interactions between particles.

Although pair-interaction potentials are straightforwardly included in classical many-

body theories, their embedding into conventional many-body quantum mechanics is

made awkward by particle indistinguishability. Here again, we present the formal repre-

sentation of a two-body operator using second quantization principles without providing

a detailed derivation for the same.

Ô2 =
∑
λλ′µµ′

⟨µ, µ′|O2|λ, λ′⟩ĉ†µ′ ĉ
†
µĉλĉλ′ (1.8)

1.2 Tight Binding Models

The beautiful simplicity embodied within the second quantisation formalism culminates

with the ease with which it can be used to describe a many-particle system. Consider,

for example, the free electron gas, with electrons occupying quantum states |k⟩ = |nk⟩,
whose Hamiltonian can be expressed as

Ĥ =
∑
k

ϵk ĉ
†
k ĉk =

∑
k

ϵkn̂k (1.9)

where ϵk represents the single-particle state of energy corresponding to the potential

energy associated with orbital |k⟩, and n̂k represents the number operator.

Now, we shall introduce an additional layer of complexity to the problem by accounting

for the interaction between fermionic particles constituting the system.

Ĥ =
∑
i

ϵi ĉ
†
i ĉi +

∑
i ̸=j

tij ĉ
†
i ĉj (1.10)
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where tij is the tunnelling matrix element corresponding to the tunnelling/hopping of

an electron from orbital |i⟩ to orbital |j⟩, such that ⟨i|Ĥ|j⟩ = tij . Additionally, since

the Hamiltonian is intrinsically Hermitian, it places a restriction on the elements of

the tunnelling matrix, namely, tij = t∗ji. Such tight-binding models can be used as a

compact, and highly intuitive description of many-particle systems in terms of creation

(annihilation) field operators.

Benzene provides an excellent toy model to illustrate the application of these principles to

formulate its equivalent tight-binding Hamiltonian. The pz orbitals in benzene interact

with only their nearest neighbors, which greatly simplifies the hopping terms associated

with its π-bonded electronic network.

Ĥπ = ϵ
6∑
i=1

ĉ†i ĉi + t
6∑
i=1

(ĉ†i ĉi+1 + ĉ†i+1ĉi)

Figure 1.1: The pz orbitals of the respective carbon atoms in benzene interact with
their nearest neighbours, forming a delocalized network of π-electrons



Chapter 2

Bandstructure

2.1 LCAO Theory

Before presenting the more elegant manner in which electronic bandstructure of many-

particle systems can be determined via a combination of the principles behind second

quantisation formalism and Bloch’s theorem, I would like to present the generic (or

more bluntly, obsolete) technique of analysing bandstructure using the principles of first

quantisation.

Consider a linear chain of identical hydrogenic atoms (ns orbitals) with individual lattice

points separated by a distance a. From the LCAO theory, the generalized wavefunction

of the system can be expressed as a linear combination of orbitals at the lattice sites:

ψ = c1ϕ1 + c2ϕ2 + c3ϕ3 + ... =
∑
n

cnϕn

where xn is the position of the nth atom. The atoms, being identical, contribute equally

to the LCAO in terms of their wavefunction amplitude but with different phase factors to

account for their periodic distribution. More formally, this idea is captured via Bloch’s

theorem, which presents a generalised wavefunction for particles in a periodic lattice:

ψk(r⃗) = eik⃗·r⃗uk(r⃗)

where uk(r⃗) is called the cell function, and represents atoms in the unit cell. For the toy

model described above, the Bloch wavefunction is given by

ψk =

N∑
n=1

eiknaϕn (2.1)

7
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The Bloch wavefunction incorporates the real-space symmetry of the lattice into the

k-space in the sense that for k > π
a , the wavefunction merely acquires a global phase,

and this does not affect the expectation value of measurables. The energy eigenvalue of

the Bloch wavefunction serves as a direct measure of the E− k relationship and is given

by

E =

∫
R ψ

†
kHψk dx∫

R ψ
†
kψk dx

(2.2)

The expectation value of the Hamiltonian can be simplified as

∫
R
ψ†
kHψk dx =

N∑
n=1

N∑
m=1

ei(n−m)ka

∫
R
ϕ†mHϕn dx

Applying the constraints of the tight-binding approximation, the integral term involved

in RHS can be simplified into three distinct cases: α if m = n, i.e., the potential energy

corresponding to each lattice site, β if |m − n| = 1, i.e., the lattice sites correspond to

nearest neighbours, and 0 otherwise.

∫
R
ψ†
kHψk dx = N(α+ β[e−ika + eika]) = N(α+ 2βcos(ka))∫

R
ψ†
kψk dx =

N∑
n=1

N∑
m=1

ei(n−m)ka

∫
R
ϕ†mϕn dx = N

since the integral term in the RHS evaluates as null unless m = n. Hence, the energy

eigenvalue is given by

Ek = α+ 2βcos(ka) (2.3)

As pointed out earlier, for values of k > π
a , the E− k diagram can be simply folded over

into the region bounded by −π
a < k < π

a . This region is otherwise known as the first

Brillouin zone.

Next, we add an additional layer of complexity to the simple toy model by considering

two atoms (not necessarily identical) per unit cell in a three-dimensional lattice. The

trial wavefunction for the same can be expressed as

ψk(r⃗) =
1√
N

N∑
n=1

{c1(k) ϕ1(r⃗1 − R⃗n − d⃗1)e
ik⃗·d⃗1 + c2(k) ϕ2(r⃗2 − R⃗n − d⃗2)e

ik⃗·d⃗2}

where N is the number of unit cells (theoretically tending to a countable infinity), and

d1, d2 represent the displacement of atomic centres 1 and 2 respectively, w.r.t the centre

of the unit cell under consideration, which itself is located at R⃗n. c1(k), c2(k) are the
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contributions of atomic orbitals 1 and 2, respectively, to the Bloch wavefunction.

Denote α1 =
∫
R ϕ

†
1Hϕ1 d3r⃗, α2 =

∫
R ϕ

†
2Hϕ2 d3r⃗, and β =

∫
R ϕ

†
iHϕj d3r⃗ =

∫
R ϕ

†
jHϕi d3r⃗

(for |i−j| = 1). Using the standard Fourier technique for eliminating the integrals yields

the following set of equations

α1 c1(k) + β
∑
n

eik⃗·d⃗nn c2(k) = E(k) c1(k)

α2 c2(k) + β
∑
n

e−ik⃗·d⃗nn c1(k) = E(k) c2(k)

where dnn is the distance between nearest neighbours in the lattice. In matrix form,

these equations can be represented as[
α1 βg(k)

βg†(k) α2

][
c1(k)

c2(k)

]
= E(k)

[
c1(k)

c2(k)

]

where g(k) =
∑

m e
ik⃗·d⃗m . Solving for the eigenvalues of the matrix, we obtain,

E =
α1 + α2

2
±

√(
α1 − α2

2

)2

+ β2|g(k)|2 (2.4)

Under the limit that the atoms in the unit cell are identical, α1 = α2 = α and are

equally spaced at a distance a apart, the energy eigenvalues simplify to E(k) = α ±
β(e−ika + eika) = α± 2βcos(ka). If the atoms are non-identical, then the degeneracy of

the non-bonding orbital is broken, and there exists a band gap in the material.

2.2 Discretizing the Hamiltonian

While the detailed mathematical analysis outlined in the previous section is useful for

gaining a physical intuition of the system, we need to generalize this process to basis

sets other than the simple 1-D chain of atoms that we have been working on. In order

to do so, we have to discretize the Schrödinger’s equation such that we can formulate

the Hamiltonian and the corresponding eigenvectors as matrices. This is also useful as a

computational tool, since equations need to be discretized in order to run computational

simulations. However, its utility is not merely limited as a computational tool- it will

be shown that the idea of the wavefunction being a superposition of basis functions is

essential to the structure of quantum mechanics in general.
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Consider, for example, the classical problem of a perticle trapped in a box bounded by

infinitely high walls. The Schrödinger’s equation governing the system is given by

− ℏ2

2m

d2ψ

dx2
+ U0ψ = Eψ

The setup can be described as a discrete system, consisting of N lattice sites separated

by some infinitesimal lattice constant a such that the ansatz satisfying this equation can

be discretized as ψn = ψ0e
ikna via the Bloch’s theorem (observe that the basis set is

singleton {ψ0}). The Hamiltonian can be discretized as follows

dψ

dx

∣∣∣∣
x=n

=
ψ|x=n+ 1

2
− ψ|x=n− 1

2

a

d2ψ

dx2

∣∣∣∣
x=n

=

dψ
dx |x=n+ 1

2
− dψ

dx |x=n− 1
2

a
=
ψn+1 − 2ψn + ψn−1

a2

Setting U0 = 0 and selecting a discrete lattice consisting of N = 100 points, we have the

discretized Hamiltonian given by

H =

1 2 . . . 99 100

1 2t0 −t0 . . . 0 0

2 −t0 2t0 . . . 0 0
...

99 0 0 . . . 2t0 −t0
100 0 0 . . . −t0 2t0

(2.5)

where t0 = ℏ2
2ma2

. The set of energy eigenvalues is given by 2t0(1 − cos(kna)), such

that kn = nπ
L . This result differs from the solution obtained analytically unless kna =

nπa
L << 1, as shown in Fig. 2.1.
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Figure 2.1: Numerical evaluation yields 100 eigenvalues that follow the analytical
result well for low energies but deviate at higher energies because the wavefunctions

oscillate too rapidly.

The process of discretization did not yield an accurate analytical answer in this case since

the setup itself is intrinsically continuous. However, for the problems we are interested

in, this process yields fairly accurate solutions since the periodic nature of the lattice

then facilitates its description as a discretized system.

2.2.1 Toy examples

Consider a toy one-dimensional solid composed of N atoms, separated by a distance a.

Assuming one orbital per atom and periodic boundary condition, the N×N Hamiltonian

matrix can be written as follows:

H =

|1⟩ |2⟩ . . . |N − 1⟩ |N⟩
|1⟩ E0 Ess . . . 0 Ess

|2⟩ Ess E0 . . . 0 0
...

|N − 1⟩ 0 0 . . . E0 Ess

|N⟩ Ess 0 . . . Ess E0

(2.6)

The off-diagonal elements at the top-right and the bottom-left are to account for the fact

that we are applying the periodic boundary condition. The set of equations (all identical
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in form) that we obtain by applying [H]ψ = Eψ can be written as (n = 1, 2, . . . N)

Eψn = E0ψn + Essψn−1 + Essψn+1

This set of equations can be solved analytically by the ansatz (via Bloch’s Theorem):

ψn = ψ0e
ikna where ka = n2π/N

Substituting the ansatz into 2.2.1, we obtain

E = E0 + 2Esscos(ka) (2.7)

It would seem logically inconsistent that while we started out with a N×N Hamiltonian

and were expected to find N discrete eigenvalues, we have instead found a continuous,

periodic function apparently implying that we have infinitely many possible eigenvalues.

However, there is something more subtle at work here - due to the discrete nature of the

lattice, values of ka that differ by 2π represent identical states, which can be verified by

considering the ansatz (k
′
= k + 2π/a):

ψ
′
n = ψ0e

ik
′
na = ψ0e

iknaein2π

ψ
′
n = ψ0e

ikna = ψn

Since only the values of ka within a range of 2π yield independent solutions, in principle,

we could take any range of size 2π, and it would be physically acceptable. It is common

to restrict ka to the range −π < ka < π, otherwise known as the first Brillouin zone.

Note that while we have now limited the possible eigenvalues within the first BZ, the

continuous function seemingly implies that there are still infinitely many eigenvalues

within the zone itself. This issue can be resolved by taking into consideration the periodic

boundary condition applied to the Hamiltonian initially: ψ0 = ψN . This implies

ψ0 = ψN = ψ0e
ikNa

ka =
2π

N
ν

where ν ∈ Z. Thus, we end up with N discrete energy eigenvalues, all bound within the

first Brillouin zone, as intended from physical intuition.
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Figure 2.2: Bandstructure for a one-dimensional solid with E0 = 0 and Ess = −1

Consdier next a one-dimensional lattice with staggered hopping amplitudes, which is

described by the well-known Su-Schreiffer-Heeger (SSH) model. The chain consists of

N unit cells, each unit cell hosting two sites, one on sublattice A, and one on sublattice

B. The matrix representation of the discretized Hamiltonian of the system is given by

H =

|1A⟩ |1B⟩ |2A⟩ |2B⟩ |3A⟩ |3B⟩ . . .

|1A⟩ E0 Ess 0 0 0 0 . . .

|1B⟩ Ess E0 E
′
ss 0 0 0 . . .

|2A⟩ 0 E
′
ss E0 Ess 0 0 . . .

|2B⟩ 0 0 Ess E0 E
′
ss 0 . . .

|3A⟩ 0 0 0 E
′
ss E0 Ess . . .

|3B⟩ 0 0 0 0 Ess E0 . . .

(2.8)

The Hamiltonian can be expressed in a more compact form by condensing the elements

of the matrix into (2× 2) blocks as shown

[H] =

|1⟩ |2⟩ |3⟩ . . .

|1⟩ H11 H12 0 . . .

|2⟩ H21 H22 H23 . . .

|3⟩ 0 H32 H33 . . .

(2.9)

where
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Hn,n =

[
E0 Ess

Ess E0

]
Hn,n+1 =

[
0 0

E
′
ss 0

]
Hn,n−1 =

[
0 E

′
ss

0 0

]

The matrix equation ([H]ψ = Eψ) can be written in the form

Eϕn = Hn,nϕn +Hn,n−1ϕn−1 +Hn,n+1ϕn+1

where {ϕn} represents a (2× 1) column vector (this is in accordance with the fact that

we have two basis states). Yet again, the ansatz for solving this set of equations is given

by

{ϕn} = {ϕ0}eikna

Substituting the ansatz, we have

E{ϕ0} = Hnn{ϕ0}+Hn,n−1e
−ika{ϕ0}+Hn,n+1e

ika{ϕ0}

that is

E{ϕ0} =

[
E0 Ess + E

′
sse

−ika

Ess + E
′
sse

ika E0

]
{ϕ0}

The energy eigenvalues of the system are given by

E± = E0 ±
√
E2
ss + E′2

ss + 2EssE
′
sscos(ka) (2.10)

2.2.2 General Result

We shall now generalize this procedure for calculating the bandstructure of any periodic

lattice with an arbitrary number of basis functions per unit cell. Consider any particular

unit cell n connected to its neighboring unit cellsm by a Hamiltonian [Hnm] of size (b×b),
b being the number of basis functions per unit cell. The overall matrix equation can be

written as

E{ϕn} = [Hnm]{ϕm}
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Figure 2.3: Bandstructure for the dimerized one-dimensional lattice

where {ϕm} is a (b × 1) column vector denoting the wavefunction in unit cell m. The

ansatz suggested for solving this is given by

{ϕm} = {ϕ0} eik⃗·d⃗m

Substituting the ansatz into the original matrix equation, we get

E{ϕ0} = [h(k⃗)]{ϕ0} with [h(k⃗)] =
∑
m

[Hnm] e
ik⃗·(d⃗m−d⃗n)

The summation runs over all neighbouring unit cells (including itself) with which the

unit cell n has any overlap.

2.2.3 Graphene

Graphene consists of a single layer of a hexagonal lattice of carbon atoms. The unit cell

has to be chosen carefully in this case since adjacent carbon atoms aren’t in an identical

environment in the graphene lattice – one of the atoms sees two neighbours to its right

and one neighbour to the left, while the situation is vice-versa for the adjacent atom.

However, if we lump these two adjacent atoms into a unit cell as shown in Fig. 2.4, then

the lattice of unit cells becomes periodic and each lattice site experiences an identical

environment.
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Figure 2.4: Unit cell of two atoms in the graphene lattice

It turns out that the 2pz orbital is sufficient to describe the bandstructure of graphene

since the contribution of the 2s, 2px, and 2py orbitals is insignificant in the vicinity of

the Fermi energy. The resulting (2× 2) Hamiltonian is given by

[h(k⃗)] =

[
0 −t
−t 0

]
+

[
0 −t eik⃗·a⃗1

0 0

]
+

[
0 −t eik⃗·a⃗2

0 0

]
+

[
0 0

−t e−ik⃗·a⃗1 0

]
+

[
0 0

−t e−ik⃗·a⃗2 0

]

where a⃗1 = x̂a+ ŷb, a⃗2 = x̂a− ŷb with a = 3a0/2, b =
√
3a0/2. On simplifying the

expression,

[h(k⃗)] =

[
0 h0

h∗0 0

]
(2.11)

where h0 = −t(1 + 2eikxacos(kyb)). The energy eigenvalues are given by

E± = ±|h0| = ±t
√

1 + 4 cos(kxa) cos(kyb) + 4 cos2(kyb) (2.12)
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Figure 2.5: Bandstructure of graphene

Figure 2.6: Heatmaps for the conduction band and valence band of graphene, respec-
tively. Note the violet (or yellow) nodes which represent ’valleys’ in the bandstructure.



Chapter 3

Transport Phenomena in

Semiconductor-Superconductor

Hybrid Structures

The non-equilibrium Green’s function (NEGF) technique has emerged as a powerful

tool for modelling nanoscale devices. Due to the versatility of the NEGF formalism,

it can also be employed for devices that incorporate superconducting elements, which

are of great academic interest, especially ones involving topological superconductivity

and Majorana bound states. Refer to Appendix B for a brief discussion of the NEGF

formalism used throughout the text.

3.1 The Bogoliubov deGennes Hamiltonian

The Bardeen-Cooper-Schreiffer theory was presented in 1956 as a variational mean-

field approach to phonon-mediated inter-electron attractive interactions, leading to the

formation of Cooper pairs below a critical temperature. As a superconductor is cooled

below its critical temperature, the attractive interactions between electrons dominate

over the repulsive Coulombic forces. In the presence of a net-attractive interaction,

no matter how weak, the normal metal state becomes unstable. An attractive matrix

element can arise by the coupling of electrons to another system of particles or excitations

in the solid. The BCS theory was the first microscopic description of the ground state

of the superconductor, following which Bogoliubov formulated a concise framework in

terms of quasiparticles to describe setups which feature superconductors coupled with

normal systems.

18
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A system of interacting electrons is described by the second quantization Hamiltonian,

in terms of electron creation (annihilation) field operators Ψ†(rσ) (Ψ(rσ)), at position

r, with spin σ

H = H0︸︷︷︸
single-particle Hamiltonian

+ Hint︸︷︷︸
four-fermion interaction Hamiltonian

H0 =

∫
dr
∑
σ

Ψ†(rσ)

[
(−iℏ∇− eA)2

2m∗ + U0(rσ)− µ

]
Ψ(rσ)

Hint = −1

2
V

∫
dr
∑
σ,σ′

Ψ†(rσ)Ψ†(rσ′)Ψ(rσ′)Ψ(rσ)

(3.1)

where A is the magnetic vector potential, m∗ is the electron effective mass, U0 is the

single-particle potential energy and V scales the interaction energy. Using the mean-field

approximation, the four-fermion interaction potential can be expressed as an average

potential acting on one particle at a time, which restricts the Hamiltonian to terms

quadratic in field operators.

Hmf =

∫
dr
∑
σ

Ψ†(rσ)[H0 + Uσ]Ψ(rσ) +

∫
dr [∆ Ψ†

↑Ψ
†
↓ +∆∗ Ψ↓Ψ↑]

The superconducting order parameter (∆), which couples electrons and holes of opposite

spin and momentum, is the physical quantity that sets apart superconductors from a

normal insulator. Apart from the conventional terms involving Coulomb interaction,

which are of the form ⟨ψ†
iψj⟩ (where i, j are labelling indices for a combination of

quantum-state and spin), there are anomalous terms of the form ⟨ψ†
iψ

†
j⟩ arising from

the Cooper pairing process below the critical temperature.

As per the BCS theory, the indices can be transformed as i → k ↑, and j → −k ↓ for a

continuum model. Assuming a metallic system, we end up with up-spin and down-spin

bands filled up to the Fermi level designated by the electrochemical potential µ. A “hole”

transformation can be performed on the down-spin band, which flips the band, and the

down-spins are now represented by unfilled particles or holes, similar to semiconductor

physics. This is equivalent to a 2-component spinor transformation:

[
Ψ†

↑(r)

Ψ†
↓(r)

]
→

[
Ψ†

↑(r)

Ψ↓(r)

]
(in real space),

[
c†k↑

c†−k↓

]
→

[
c†k↑

c−k↓

]
(in k -space) (3.2)

The Hamiltonian of the continuum model is a 2×2 matrix in k-space, with two dispersion

relations that get coupled due to the pairing term ∆k.
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Hk =

[
(ϵk − µ) ∆k

∆∗
k −(ϵk − µ)

]

where, ϵk =
ℏ2k2
2m∗ .

We can discretise the continuum model described above into a lattice model with a

spacing of a. The on-site component of the Hamiltonian is given as

αS =

[
2t− µ ∆0

∆∗
0 −(2t− µ)

]
(3.3)

where, t = ℏ2
2m∗a2 is the nearest-neighbour hopping parameter. The nearest-neighbour

hopping matrix is given by

β =

[
−t 0

0 t

]
(3.4)

The tight-binding Hamiltonian is subsequently written as

H =

N∑
i

c†iαSc
i +

N∑
i ̸=j

c†iβcj (3.5)

where c†i is the creation operator of the Nambu 2-component spinor ar site i, and N is

the number of sites in the device. The Hamiltonian of the superconducting sample can

be written in the general form

H =



αS β 0 . . . 0

β† αS β 0 0

0 β† αS β
...

... 0
. . .

. . . β

0 . . . . . . β† αS


(3.6)

3.2 The Isolated Kitaev Chain

The field of topological superconductivity began with a lattice model proposed by Kitaev

in 2001. The Kitaev chain is a tight-binding chain of N lattice sites, with one spinless

fermionic orbital at each site and nearest-neighbour p-wave superconducting pairing.
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The p-wave nature of the superconductivity couples particles of equal spin, allowing a

spinless treatment. The pairing is treated in the usual mean-field approach, yielding the

Kitaev grandcanonical Hamiltonian

ĤKC = −µ
N∑
j=1

c†jcj − t
N−1∑
j=1

(c†j+1cj + c†jcj+1)−∆
N−1∑
j=1

(c†jc
†
j+1 + cj+1cj) (3.7)

in terms of the fermionic creation (annihilation) field operators c†j (cj). The hopping

amplitude t and the superconducting pairing constant ∆ are assumed to be real quan-

tities in this case. The chemical potential µ represents the on-site energy and can be

modulated by applying a gate voltage.

The Kiteav Hamiltonian has been of particular interest in the context of topological

superconductivity due to the possibility of hosting Majorana zero modes (MZMs) at its

end in a particular parameter range. This can be seen by expressing the Hamiltonian

in terms of so-called Majorana operators γA,B,

(
cj

c†j

)
=

1√
2

(
γAj

γBj

)
, (γA,B)† = γA,B, (3.8)

yielding the form

ĤKC = −iµ
N∑
j=1

γAj γ
B
j + i(∆ + t)

N−1∑
j=1

γBj γ
A
j+1 + i(∆− t)

N−1∑
j=1

γAj γ
B
j+1 (3.9)

For the particular parameter settings ∆ = ±t and µ = 0, which we call the Kitaev

points, equation (3.9) leads to a ‘missing’ fermionic quasiparticle q± at the extrema of

the Kitaev chain:

q+ =
1√
2
(γA1 + iγBN ) [∆ = t]

q− =
1√
2
(γB1 + iγAN ) [∆ = −t]

(3.10)

This quasiparticle has zero energy and is composed of two isolated Majorana states

localised at the ends of the chain. In general, the condition of hosting MZM is not

restricted to the Kitaev points.
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3.2.1 Bulk spectrum

The Kitaev Hamiltonian in the limit of N → ∞ reads in k-space

ĤKC =
1

2

∑
k

ψ̂†
kH(k)ψ̂k, ψ̂†

k =
(
ck c†−k

)T
The 2× 2 BdG matrix

H(k) =

[
−µ− 2t cos(ka) −2i∆ sin(ka)

2i∆ sin(ka) µ+ 2t cos(ka)

]
(3.11)

can be diagonalized to yield the excitation spectrum

E±(k) = ±
√

4∆2 sin2(ka) + [µ+ 2t cos(ka)]2 (3.12)

3.2.2 Energy spectrum of the finite Kitaev chain

Next, consider a finite Kitaev chain with N sites and open boundary conditions, yielding

N allowed k values. The BdG Hamiltonian of the open Kitaev chain can be expressed

in the basis of standard fermionic operators ψ̂ = (c1, . . . , cN , c
†
1, . . . , c

†
N ),

ĤKC =
1

2
ψ̂†HKCψ̂

where the BdG Hamiltonian HKC is

HKC =

[
C S

S† −C

]
(3.13)

These matrices have the tridiagonal structure
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C =



−µ −t
−t −µ −t

−t −µ −t
. . .

. . .
. . .

−t −µ −t
−t −µ −t

−t −µ


N×N

S =



0 ∆

−∆ 0 ∆

−∆ 0 ∆
.. .

. . .
. . .

−∆ 0 ∆

−∆ 0 ∆

−∆ 0


N×N

(3.14)

the spectrum can be obtained by diagonalising HKC in real space. The fermionic opera-

tors associated with the Kitaev chain can be represented in several bases, each suited to

facilitate some specific calculation. The default basis can be rearranged to a site-ordered

particle-hole basis where ψ̂ = (c†1, c1, . . . , c
†
N ) with the BdG Hamiltonian matrix given

by

HKC =



α β

β† α β

β† α β
. . .

. . .
. . .

β† α β

β† α β

β† α


N×N

(3.15)

where

α =

[
−µ 0

0 µ

]
,

β =

[
−t ∆

−∆ t

] (3.16)
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Figure 3.1: Eigenspectrum of the finite Kitaev chain as a function of µ/∆ for N =
25, ∆/t = 1.0. Note the zero energy modes observed within the topological regime, i.e.,

|µ| < 2|t|.

We can also construct a “disordered” system with local inhomogeneity in the on-site

potential. Such an inhomogeneity might occur due to Fermi energy mismatch as well as

charge inhomogeneities in the system. For the disordered chain, the zero energy modes

are observed both in the topological regime and in the trivial regime, which can make

it difficult to identify genuine topological transitions in an experimental scenario.
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Figure 3.2: Eigenspectrum for a pristine setup with N = 21 and t/∆ = 4.1

Figure 3.3: Eigenspectrum for a disordered setup with N = 21 and t/∆ = 4.1
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Figure 3.4: Eigenspectrum for a pristine setup with N = 100 and t/∆ = 4.1

Figure 3.5: Eigenspectrum for a disordered setup with N = 100 and t/∆ = 4.1
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3.3 Voltage Driven Transport

Andreev processes are fundamental to our understanding of transport phenomena across

superconducting hybrid devices. They involve the reflection of an electron (hole) as a

spin-reversed hole (electron), resulting in the transfer of a Cooper pair in the super-

conductor. Andreev reflections arise naturally from the BdG Hamiltonian, which has

the form as shown in equation (3.17), and are thus characteristic processes of an N/S

interface and are absent in normal junctions.

HBdG =

[
H↑ + U − µ ∆

∆∗ −(H↓ + U − µ)

]
(3.17)

where H↑(↓) refers to the Hamiltonian of the up- (down)-spin sector, and U refers to the

local potentials that give rise to various reflection and transmission processes. The order

parameter ∆ can be viewed as a potential which couples the up-spin (upper) block with

the down-spin (lower) block and is responsible for Andreev processes.

Figure 3.6: Andreev Reflection – An incoming electron from the normal region is
reflected as a spin-reversed hole, resulting in the transfer of a Cooper pair into the

superconductor.

Therefore, in superconducting systems, we end up with two distinct processes – normal

reflections, wherein electrons and holes reflect independently, and Andreev reflections,

where electrons (holes) can reflect off as spin-reversed holes (electrons).
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3.3.1 N/S Junctions

In the ballistic regime, we are familiar with the conductance quantisation in normal

insulators, where each mode conducts with a conductance G = 2e2

h . However, as a con-

sequence of Andreev processes, the conductance quantum is doubled in an N/S interface

in the so-called “sub-gap” regime. Similar to the regular barrier potential in normal de-

vices, which serve as a gap for the transmission of electrons/holes, the order parameter

∆ can be thought of as a barrier in the superconducting region, which implies that the

energy range −∆ < E < ∆ is unique to Andreev processes.

In the electron-hole Nambu space, each contact has two components: the electron and

the hole blocks. Assuming that a bias voltage V is impressed on the N-side while the S-

side is kept grounded, the electronic electrochemical potential translates to µNe = +eV ,

and the hole electrochemical potential translates to µNh = −eV . In layman’s terms, it is

as if the contact splits into two viable contacts simply as a result of the BdG framework

being used to describe the junction.

This can also be explained in more mathematical detail via the NEGF framework. The

contact broadening matrices can be written with a general diagonal structure (due to

diagonal structure of normal contacts in the Nambu space) as Γα = Γeeα + Γhhα , where

the superscripts ee(hh)denote the electron (hole) diagonal component of the broadening

matrix, and α = L/RN/S. The current across the N/S junction can be derived from the

electron or hole current at the N-contact as,

I
e(h)
N (E) =

e

h

Tr(Γ
ee(hh)
L GrΓ

ee(hh)
R Ga)︸ ︷︷ ︸

TD

[f
ee(hh)
N (E)− f

ee(hh)
S (E)]


+
e

h

Tr(Γ
ee(hh)
L GrΓ

hh(ee)
L Ga)︸ ︷︷ ︸

TA

[f
ee(hh)
N (E)− f

hh(ee)
N (E)]


(3.18)

where the first term represents the direct transmission process of electron (hole), the

second term represents the direct Andreev transmission, and the Fermi distributions are

denoted by feeα = f(E − µα), f
hh
α = f(E + µα).

Given the fact that the total current (electron + hole) is double that of each sector as

defined in equation (3.18), the current at the N-side can be expressed in a more concise

form as,
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IN =
2e

h

∫
dE (TD(E) [f(E − eV )− f(E)] + TA(E) [f(E − eV )− f(E + eV )]) (3.19)

From the above equation, one can analytically evaluate the current by setting the tem-

perature T → 0, and taking derivatives w.r.t. the applied bias at the N-side. In the

sub-gap regime, Andreev transmission dominates with a probability of unity since the

superconducting segment is infinitely long. From this, we get G(V ) = ∂IN
∂V = 4e2

h , elu-

cidating the conductance doubling in the sub-gap regime. In the supra-gap regime,

Andreev transmission occurs alongside direct transmission, which gives a conductance

G(V ) = 4e2

h TA + 2e2

h TD, with a suppression of TA with increasing bias voltage. In the

asymptotic range of large energies, only the direct transmission dominates due to the

quasiparticle transmission and this leads to a conductance of 2e2

h at large bias.

Figure 3.7: Current as a function of the applied bias across an N/S junction.
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Figure 3.8: Conductance as a function of the applied bias across an N/S junction.

A potential U of varying magnitude has been introduced in the numerical simulations to

simulate imperfect interfaces, which relates to the “transparency” of the interface. As

U increases, the sub-gap Andreev processes are suppressed, with increasing dominance

of the direct reflection processes.

3.3.2 N-S-N Structure

In an N-S-N setup, we have two N-S interfaces, with the superconducting region acting

as the device region and the two N-regions as contacts. Similar to the Fabry-Perot

resonance in double barrier devices, multiple Andreev reflections give rise to resonant

states termed as Andreev bound states (ABS). The superconducting region, in particular,

would be a finite Kitaev chain, which is contacted on both sides with normal leads for

the remainder of this text.

As discussed in 3.3.1, the N/S junction can be visualised as two independent terminals

operating at the same contact. Following from this argument, the analysis of the N-S-N

setup will be based on an elaborate four-terminal device based on the Landauer-Büttiker

setup. Apart from the generic direct and Andreev transmission processes, we now have

an additional Andreev process termed as the crossed Andreev reflection (CAR), which

corresponds to the transmission of an electrons (holes) from the left (right) contact as

a hole (electron) from the right (left) contact. We can express the current across the

system as a sum of three components,
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I
e(h)
L (E) =

e

h

Tr(Γ
ee(hh)
L GrΓ

ee(hh)
R Ga)︸ ︷︷ ︸

TD

[f
ee(hh)
L (E)− f

ee(hh)
R (E)]


+
e

h

Tr(Γ
ee(hh)
L GrΓ

hh(ee)
L Ga)︸ ︷︷ ︸

TA

[f
ee(hh)
L (E)− f

hh(ee)
L (E)]


+
e

h

Tr(Γ
ee(hh)
L GrΓ

hh(ee)
R Ga)︸ ︷︷ ︸

TCAR

[f
ee(hh)
L (E)− f

hh(ee)
R (E)]



(3.20)

where the third term represents the CAR process.

In order to setup the transport simulations, we can potentially by-pass the tedious

surface Green’s function calculations by making the wide-band approximation, such

that a constant density of states is assumed in the energy range of interest. This results

in a constant γ value for each relevant element of the broadening matrix Γ.

Since we have two N-S interfaces, one can apply a bias across the device with a generic

condition on µL and µR. This can prove useful during numerical simulations, since

applying a symmetric bias of VL = −VR = V/2 will nullify the crossed Andreev reflection

term, TCAR.

Figure 3.9: Total linear conductance (GA + GD) in units of e2/h for N =
20, γL/R/∆ = 0.001 as a function of µ/∆.
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Figure 3.10: Total linear conductance (GA + GD) in units of e2/h for µ =
0.0, γL/R/∆ = 0.001 as a function of N .

Figure 3.11: Resonant modes in the linear conductance after t/∆ exceeds a threshold
value.
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3.3.2.1 Linear Transport

In the linear transport regime (V → 0, T → 0), the closed form expressions for the

conductance of the Kitaev chain have been simulated with reference to [1].

Figure 3.12: Direct conductance term (GD) in units of e2/h for γL/R/∆ = 0.001 as
a function of µ/∆ and t/∆.

Figure 3.13: Andreev conductance term (GA) in units of e2/h for γL/R/∆ = 0.001
as a function of µ/∆ and t/∆.
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Figure 3.14: Total conductance (GA + GD) in units of e2/h for γL/R/∆ = 0.001 as
a function of µ/∆ and t/∆.
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3.3.2.2 Non-linear Transport

Figure 3.15: Differential conductance of a pristine setup in units of e2/h as a function
of eV/2∆ and µ/∆ for N = 21, γL/R/∆ = 0.02, and |t/∆| = 4.1.
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Figure 3.16: Differential conductance of a disordered setup in units of e2/h as a
function of eV/2∆ and µ/∆ for N = 21, γL/R/∆ = 0.02, and |t/∆| = 4.1.
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Figure 3.17: Differential conductance of a pristine setup in units of e2/h as a function
of eV/2∆ and µ/∆ for N = 21, γL/R/∆ = 0.02, and |t/∆| = 1.0.
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Figure 3.18: Differential conductance of a disordered setup in units of e2/h as a
function of eV/2∆ and µ/∆ for N = 21, γL/R/∆ = 0.02, and |t/∆| = 1.0.



Appendix A

Bloch’s Theorem

Periodic potentials are important in condensed matter physics, and we will be using the

Bloch wavefunctions generously during the analysis of toy models. Secondly, periodic

potentials will give us our first examples of Hamiltonian systems with symmetry, and

they will serve to illustrate certain general principles of such systems.

We wish to solve the one-dimensional Schrödinger equation,

− ℏ2

2m
ψ′′ + V (x)ψ = Eψ

where the potential is assumed to be spatially periodic,

V (x+ a) = V (x) (A.1)

Here a is the lattice spacing or spatial period of the 1-D lattice. No further assumptions

need be made about the behaviour of V (x) within any period apart from its periodicity.

Next, we shall make a strong assumption that there is a super-symmetry that rides over

the good ole periodicity of the lattice points such that the lattice repeats itself after N

lattice spacings. This is equivalent to imposing a periodic/circular boundary condition

on the solutions to the Hamiltonian.

We introduce the translation operator, T (a), which has the effect of displacing the wave

function by the lattice spacing a along the x-axis.

T (a)ψ(x) = ψ(x− a) (A.2)

39
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Functionally, the translation operator is given by,

T (a) = e−
iap
ℏ (A.3)

An easy check will ascertain that this operator commutes with both kinetic energy, as

well as potential energy operators. This means that T(a) commutes with the entire

Hamiltonian,

[T (a), H] = 0 (A.4)

Put more generally, H commutes with any power of T (a), Tn(a) = T (na), which is to

say that it commutes with the entire group of symmetry operations generated by T (a).

The fact that H and T (a) commute provides us a powerful tool to determine the eigen-

functions of H. More often than not, it is hard to find the eigenfunctions of H, but much

easier to find those for the translation operator. Since we now know the eigenfunctions

of the translation operator, it makes the search for the eigenfunctions of H easier since

they are a subset of the eigenspace of T (a).

Since T (a) is unitary, its eigenvalue τ must be a phase factor, τ = e−iθ. The angle θ

characterizes the eigenvalues of T (a) and may be restricted to the range −π < θ ≤ π.

It is conventional to write this angle in the form θ = ka, where k is a quantity with

dimensions of wave number, which characterizes the eigenvalue. We now have,

T (a)ψk(x) = ψk(x− a) = e−ikaψk(x) (A.5)

Equivalently, we can write this as,

ψk(x+ a) = eikaψk(x) (A.6)

Now we are faced with a dilemma - for any given value of k, there are functions ψk

which satisfy A.6, so the spectrum of T (a) is the entire unit circle in the complex plane.

Furthermore, the number of such functions for any value of e−ika is infinite, so the eigen-

values are infinite-fold degenerate and the eigenspaces of T (a) are infinite-dimensional.

This would render the entire analysis using translation operators inconsequential since

it was asserted that this approach would help limit the space in which we have to search
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for the eigenfunctions of H. This is exactly where the initial boundary condition assum-

ing a super-symmetry comes into play. In case the lattice repeats itself after N lattice

spacings, the single-valuedness of the wavefunction requires

ψ(x+Na) = ψ(x)

so the eigenvalues of T (a) are phase factors of the form e−
2nπi
N , for n = 0, ..., N − 1. In

this case, the spectrum of T (a) is discrete, although each eigenvalue is still infinite-fold

degenerate. Rather than ψk(x), it is often easier to work with a function uk(x), defined

by

ψk(x) = eikxuk(x) (A.7)

where uk is periodic, uk(x+ a) = uk(x). Bloch’s theorem states that since H commutes

with T (a), H possesses eigenfunctions which are of the form of ψk(x), that is, e
ikx times

a periodic function uk(x).

An interesting offshoot of the Bloch wavefunction is the concept of ’crystal momentum’,

which does not represent the momentum of the electron in real space but rather encap-

sulates the effect of the net external potential acting on it without having to concern

ourselves with the internal forces.



Appendix B

Non-Equilibrium Green’s

Function Formalism (NEGF)

This appendix presents an algorithmic approach employed for simulations using the

NEGF framework.

The retarded Green’s function in the energy domain is given by

Gr(E) = [(E + iη)1−H− ΣL − ΣR]
−1 (B.1)

where H is the contact Hamiltonian, ΣL,R are the self-energies of the semi-infinite con-

tacts, and η is an infinitesimally small damping parameter. The advanced Green’s func-

tion is defined as the Hermitian conjugate of the retarded Green’s function (Ga = Gr†).

The surface Green’s functions (gs) at each contact are recursively evaluated

gsi(E) = [(E + iη)1− αi − β†i gsi(E)βi]
−1 (B.2)

where the subscript i labels the contact. The lead self-energy matrices ΣL and ΣR are

computed as

Σ1 =

(
σ1 0

0 0

)
, Σ2 =

(
0 0

0 σ2

)
(B.3)

where σi = βgsiβ
†

42
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The anti-Hermitian part of the self-energy is responsible for the finite life-time of the

quasiparticles in the junction and broadens the energy levels. This broadening matrix

is denoted by Γi.

The Fermi functions in the particle-hole Nambu space is given by

Fi =

[
f(E,µ+ eV ) 0

0 f(E,−µ− eV )

]
(B.4)

where f(E,µ) is the Fermi function, and V is the contact bias.

The lesser self-energy, or the inscattering matrix can be computed from the broadening

matrix and Fermi functions as

−iΣ< = Σin = Γ1F1 + Γ2F2 (B.5)

The lesser Green’s function is computed as

−iG< = Gn = GrΣinG
a (B.6)

Transport properties of the setup are calculated from the elements of the current operator

matrix. The current operator through the left cont

IopL (E) =
ie

h
(GrΣinL − ΣinL G

a − ΣLG
n +GnΣ†

L) (B.7)

The current operator in B.7 signifies electron currents and taking its trace gives us the

well-known current operator formula which reads

IopL (E) =
e

h
Tr[ΣinL A− ΓLG

n] (B.8)

where A(E) = i(Gr(E)−Ga(E)), is the spectral function.

The current operator must be suitably modified in Nambu space and all quantities must

be consistent with the BdG Hamiltonian. The net current is given by the difference of

the partial trace of the current operator over the electron and hole sub-spaces.

J(E) = Tre(Iop)−Trh(Iop)

= Tr(Iopτz)
(B.9)
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where τz = σz ⊗ 1N×N is the Pauli-z operator in the particle-hole Nambu space. The

total current is then evaluated by integrating the current-energy density

I(ϕ) =

∫ ∞

−∞
J(E)dE (B.10)
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